International Tables for Crystallography (2006). Vol. B, ch. 4.5, pp. 466-485   | 1 | 2 |
https://doi.org/10.1107/97809553602060000567

Chapter 4.5. Polymer crystallography

Chapter index

Approximate helix symmetry 4.5.2.3.3
Approximations
kinematical 4.5.3.1
Background diffraction, accurate subtraction of 4.5.2.5
Cell constants 4.5.2.6.2
Coherence length 4.5.2.2
Continuous diffraction on layer lines 4.5.2.5
Copolymers, random 4.5.2.4.3
Correlated lattice disorder 4.5.2.4.4
Cylindrically averaged diffraction patterns 4.5.2.4.3
Cylindrically averaged Patterson function 4.5.2.6.3
Difference Fourier analysis 4.5.2.6.1
Difference Fourier synthesis 4.5.2.6.5
Diffraction
by helical structures 4.5.2.3
Diffraction patterns
cylindrically averaged 4.5.2.4.3
Disordered fibres 4.5.2.2
Disorder
lattice 4.5.2.4.4
lattice, correlated 4.5.2.4.4
substitutional 4.5.2.4.4
Effective potential-energy function 4.5.2.6.6
Electron crystallography
of polymers 4.5.3.1
Electron-diffraction data
for crystal-structure determination 4.5.3.1
three-dimensional 4.5.3.4, 4.5.3.4
Electron micrographs
Fourier transform of 4.5.3.3
Epitaxic orientation techniques 4.5.3.2
Equal-amplitude assumption 4.5.2.6.6
Exploration of parameter space by molecular model building 4.5.2.6.1
Fibre axis 4.5.2.2
Fibre diffraction 4.5.2.6.1
R factor 4.5.2.6.8
specimens for 4.5.2.1
X-ray 4.5.1
Fibres
disordered 4.5.2.2
macromolecular 4.5.2.6.6
noncrystalline 4.5.2.2, 4.5.2.4.1, 4.5.2.6.1
partially crystalline 4.5.2.4.4
polycrystalline 4.5.2.2, 4.5.2.4.2, 4.5.2.6.1
Filtering
iterative low-pass 4.5.2.5
Fourier–Bessel structure factors 4.5.2.3.2
Fourier transforms
of electron micrographs 4.5.3.3
Helical structures
diffraction by 4.5.2.3
Helical symmetry 4.5.2.3.1, 4.5.2.6.2
approximate 4.5.2.3.3
Helix repeat units 4.5.2.3.1
Isomorphous heavy-atom derivatives 4.5.2.6.6
Iterative low-pass filtering 4.5.2.5
Juxtaposition of chains 4.5.2.6.4
Kinematical approximation 4.5.3.1
Kinematical R factor 4.5.3.3
Langmuir troughs 4.5.3.2
Lattice disorder 4.5.2.4.4
correlated 4.5.2.4.4
Layer lines, continuous diffraction on 4.5.2.5
Linked-atom least-squares (LALS) system 4.5.2.6.4
Low-energy conformational changes 4.5.2.6.7
Macromolecular fibre structures 4.5.2.6.6
Macromolecular structures, direct determination of 4.5.3.1
MDIR (multidimensional isomorphous replacement) 4.5.2.6.6
Molecular axis 4.5.2.2
Molecular-dynamics refinement 4.5.2.6.6
Molecular model building 4.5.2.6.4
Multidimensional isomorphous replacement (MDIR) 4.5.2.6.6
Nonbonded interatomic distances 4.5.2.6.4
Noncrystalline fibres 4.5.2.2, 4.5.2.4.1, 4.5.2.6.1
Partially crystalline fibres 4.5.2.4.4
Patterson function(s) 4.5.2.6.3
cylindrically averaged 4.5.2.6.3
three-dimensional 4.5.2.6.3
Phase problem 4.5.2.6.1
Polycrystalline fibres 4.5.2.2, 4.5.2.4.2, 4.5.2.6.1
Polymer crystallography 4.5.1
Polymer electron crystallography 4.5.1
Processing X-ray fibre diffraction data 4.5.2.5
Random copolymers 4.5.2.4.3
Refinement
molecular-dynamics 4.5.2.6.6
restrained least-squares 4.5.2.6.6
Restrained least-squares refinement 4.5.2.6.6
R factor
fibre diffraction 4.5.2.6.8
kinematical 4.5.3.3
SAED (selected-area electron diffraction) 4.5.3.2
Selected-area electron diffraction (SAED) 4.5.3.2
Self-seeding 4.5.3.2
Simulated annealing 4.5.2.6.1
Space-group symmetry 4.5.2.6.2
Spot boundaries 4.5.2.5
Starting models 4.5.2.6.4
Stereochemical information 4.5.2.6.1
Structure determination by X-ray fibre diffraction analysis 4.5.2.6
Structure factors
Fourier–Bessel 4.5.2.3.2
Substitutional disorder 4.5.2.4.4
Symmetry
helical, approximate 4.5.2.3.3
Three-dimensional electron-diffraction data
from a single crystal orientation 4.5.3.4
from two crystal orientations 4.5.3.4
Three-dimensional Patterson function 4.5.2.6.3
Weak phase objects 4.5.3.1
X-ray fibre diffraction analysis 4.5.1
data processing 4.5.2.5
structure determination by 4.5.2.6
Zonal data sets
view down the chain axis 4.5.3.4
view onto the chain axes 4.5.3.4