Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 4.6, p. 502   | 1 | 2 |


W. Steurera* and T. Haibacha

aLaboratory of Crystallography, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
Correspondence e-mail:


Part … LSLLSLSL … of a Fibonacci sequence [s({\bf r})] before and after scaling by the factor τ. L is mapped onto [\tau \hbox{L}], S onto [\tau \hbox{S} = \hbox{L}]. The vertices of the new sequence are a subset of those of the original sequence (the correspondence is indicated by dashed lines). The residual vertices [\tau^{2}s({\bf r})], which give when decorating [\tau s({\bf r})] the Fibonacci sequence [s({\bf r})], form a Fibonacci sequence scaled by a factor [\tau^{2}].