Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B, ch. 5.1, pp. 544-545   | 1 | 2 |

Section Non-absorbing crystals

A. Authiera*

aLaboratoire de Minéralogie-Cristallographie, Université P. et M. Curie, 4 Place Jussieu, F-75252 Paris CEDEX 05, France
Correspondence e-mail: Non-absorbing crystals

| top | pdf |

The integrated intensity is the ratio of the total energy recorded in the counter when the crystal is rocked to the intensity of the incident beam. It is proportional to the area under the line profile: [I_{hi} = {\textstyle\int\limits_{-\infty}^{+\infty}} I_{h} \hbox{ d} (\Delta \theta). \eqno(]

The integration was performed by von Laue (1960)[link]. Using ([link], ([link] and ([link] gives [I_{hi} = A {\textstyle\int\limits_{0}^{2\pi t\Lambda_{L}^{-1}}} J_{0} (z) \hbox{ d}z,] where [J_{0}(z)] is the zeroth-order Bessel function and [A = {R\lambda^{2} |C F_{h}| (\gamma)^{1/2} \over 2V \sin 2\theta}.] Fig.[link] shows the variations of the integrated intensity with [t/\Lambda_{L}].


Figure | top | pdf |

Variations with crystal thickness of the integrated intensity in the transmission case (no absorption) (arbitrary units). The expression for A is given in the text.


Laue, M. von (1960). Röntgenstrahl-Interferenzen. Frankfurt am Main: Akademische Verlagsgesellschaft.

to end of page
to top of page