International Tables for Crystallography (2006). Vol. B, ch. 5.1, pp. 534-551   | 1 | 2 |
https://doi.org/10.1107/97809553602060000569

Chapter 5.1. Dynamical theory of X-ray diffraction

Chapter index

Absorbing crystals 5.1.2.4, 5.1.6.5.2, 5.1.7.1.2, 5.1.7.2.2
Absorption coefficient 5.1.6.1, 5.1.7.1.2
effective 5.1.2.3
linear 5.1.2.1
Anomalous absorption 5.1.4
Anomalous transmission effect 5.1.5
Anti-nodes of standing waves 5.1.4
Asymmetry ratio 5.1.3.2
Back surface 5.1.7.2.1
Bloch waves 5.1.2.2
Borrmann effect 5.1.5
Borrmann triangle 5.1.8.2
Boundary conditions 5.1.2.3, 5.1.7.2.1
at exit surface 5.1.6.3
Bragg's law, departure of incident wave from 5.1.3.1
Bragg case 5.1.3.2
Debye–Waller factor 5.1.6.1
Deformed crystal 5.1.3.5
Deviation parameter 5.1.3.4, 5.1.3.7.1, 5.1.3.7.2
Dielectric susceptibility 5.1.2.1, A5.1.1.1
Fourier expansion of 5.1.2.1
Dispersion corrections 5.1.2.1
Dispersion surface 5.1.2.5
Dynamical diffraction
theory 5.1.1
Dynamical theory 5.1.1
fundamental equations 5.1.2.4
plane-wave 5.1.3
solution of 5.1.3.6
Effective absorption coefficient 5.1.2.3
Electron band theory of solids 5.1.2.5
Entrance surface 5.1.7.2.1
Ewald wave 5.1.2.2
Extinction 5.1.7.1.1
Extinction distance 5.1.3.5, 5.1.3.5, 5.1.3.7.2
Fourier expansion
of dielectric susceptibility 5.1.2.1
Fundamental equations of dynamical theory 5.1.2.4
Incident wave, departure from Bragg's law 5.1.3.1
Index of refraction 5.1.2.1
Integrated intensity 5.1.6.5, 5.1.7.1.1, 5.1.7.2.1
Intensities of plane waves
in reflection geometry 5.1.7
in transmission geometry 5.1.6
Intensities of reflected and refracted waves 5.1.6.2
Interaction of X-rays with matter 5.1.1
Large values of μot 5.1.8.2
Lattice-parameter mapping 5.1.1
Laue case 5.1.3.2
Laue point 5.1.3.1
Linear absorption coefficient 5.1.2.1
Lorentz point 5.1.2.5
Many-beam case 5.1.2.4
Maxwell's equations 5.1.2.1, A5.1.1.2
Middle of reflection domain 5.1.3.3
Mosaic crystals 5.1.1
Nodes of standing waves 5.1.4
Non-absorbing case 5.1.2.4
Non-absorbing crystals 5.1.6.5.1, 5.1.7.1.1, 5.1.7.2.1
comparison of dynamical and geometrical theory 5.1.7.2.1
Partially reflected wavefield 5.1.7.2.1
Partially transmitted wave 5.1.7.2.1
Pendellösung 5.1.3.5, 5.1.6.3.2, 5.1.6.4
spherical-wave 5.1.8.3
Pendellösung distance 5.1.3.5, 5.1.3.7.1
Penetration depth 5.1.7.1.1
Plane-wave dynamical theory 5.1.3
Poynting vector A5.1.1.4
Propagation direction 5.1.2.6
Propagation equation 5.1.2.1
Real waves 5.1.8
Reflected intensity 5.1.7.2.2
Reflecting power 5.1.6.4, 5.1.6.4
Reflection case 5.1.3.2
Reflection domain, middle of 5.1.3.3
Reflection geometry 5.1.3.2, 5.1.3.5
Rocking curve 5.1.4, 5.1.7.1.1
width at half-height 5.1.6.4
width of 5.1.3.7.1
Small values of μot 5.1.8.2
Solids
electron band theory 5.1.2.5
Solution of dynamical theory 5.1.3.6
Spherical-wave Pendellösung 5.1.8.3
Standing waves 5.1.4
anti-nodes of 5.1.4
nodes of 5.1.4
Surfaces
dispersion 5.1.2.5
Thick crystals 5.1.7.1.1
Thin crystals 5.1.7.2
comparison of geometrical and dynamical theory 5.1.6.6
Tie point 5.1.2.2
Total-reflection domain 5.1.7.1.2
Transmission case 5.1.3.2
Transmission geometry 5.1.3.2, 5.1.3.5, 5.1.3.7.1
intensities of plane waves in 5.1.6
Triply periodic 5.1.2.1
Two-beam case 5.1.2.4
Vectors
Poynting A5.1.1.4
Wavefield 5.1.2.2, 5.1.2.5
Wavevectors 5.1.6.3.1
Width of rocking curve 5.1.3.7.1
at half-height 5.1.6.4
Width of total-reflection domain 5.1.3.7.2, 5.1.7.1.1
X-rays
interaction with matter 5.1.1
X-ray topographs 5.1.1
Zero-absorption case 5.1.3.7