
5.2. Dynamical theory of electron diffraction

BY A. F. MOODIE, J. M. COWLEY AND P. GOODMAN

5.2.1. Introduction

Since electrons are charged, they interact strongly with matter, so
that the single scattering approximation has a validity restricted to
thin crystals composed of atoms of low atomic number. Further, at
energies of above a few tens of keV, the wavelength of the electron
is so short that the geometry of two-beam diffraction can be
approximated in only small unit cells.

It is therefore necessary to develop a scattering theory specific to
electrons and, preferably, applicable to imaging as well as to
diffraction. The development, started by Born (1926) and Bethe
(1928), and continuing into the present time, is the subject of an
extensive literature, which includes reviews [for instance: Howie
(1978), Humphreys (1979)] and historical accounts (Goodman,
1981), and is incorporated in Chapter 5.1. Here, an attempt will be
made to present only that outline of the main formulations which, it
is hoped, will help the nonspecialist in the use of the tables. No
attempt will be made to follow the historical development, which
has been tortuous and not always logical, but rather to seek the
simplest and most transparent approach that is consistent with
brevity. Only key points in proofs will be sketched in an attempt to
display the nature, rather than the rigorous foundations of the
arguments.

5.2.2. The defining equations

No many-body effects have yet been detected in the diffraction of
fast electrons, but the velocities lie well within the relativistic
region. The one-body Dirac equation would therefore appear to be
the appropriate starting point. Fujiwara (1962), using the scattering
matrix, carried through the analysis for forward scattering, and
found that, to a very good approximation, the effects of spin are
negligible, and that the solution is the same as that obtained from
the Schrödinger equation provided that the relativistic values for
wavelength and mass are used. In effect a Klein–Gordon equation
(Messiah, 1965) can be used in electron diffraction (Buxton, 1978)
in the form

�2�b � 8�2m�e��
h2

�b � 8�2m0�e�W
h2

1� �e�W
2m0c2

� �
�b � 0�

Here, W is the accelerating voltage and �, the potential in the
crystal, is defined as being positive. The relativistic values for mass
and wavelength are given by m � m0�1� v2�c2��1�2, and taking ‘e’
now to represent the modulus of the electronic charge, �e�,

� � h�2m0eW �1� eW�2m0c2�	�1�2,

and the wavefunction is labelled with the subscript b in order to
indicate that it still includes back scattering, of central importance
to LEED (low-energy electron diffraction).

In more compact notation,

��2 � k2�1� ��W �	�b � ��2 � k2 � 2k����b � 0� �5�2�2�1�
Here k � �k� is the scalar wavenumber of magnitude 2���, and the
interaction constant � � 2�me��h2. This constant is approximately
10�3 for 100 kV electrons.

For fast electrons, ��W is a slowly varying function on a scale of
wavelength, and is small compared with unity. The scattering will
therefore be peaked about the direction defined by the incident
beam, and further simplification is possible, leading to a forward-
scattering solution appropriate to HEED (high-energy electron
diffraction).

5.2.3. Forward scattering

A great deal of geometric detail can arise at this point and, further,
there is no generally accepted method for approximation, the
various procedures leading to numerically negligible differences
and to expressions of precisely the same form. Detailed descriptions
of the geometry are given in the references.

The entrance surface of the specimen, in the form of a plate, is
chosen as the x, y plane, and the direction of the incident beam is
taken to be close to the z axis. Components of the wavevector are
labelled with suffixes in the conventional way; K0 � kx � ky is the
transverse wavevector, which will be very small compared to kz. In
this notation, the excitation error for the reflection is given by

�h � K2
0 � �K0 � 2�h�2

4��kz� �

An intuitive method argues that, since ��W 
 1, then the
component of the motion along z is little changed by scattering.
Hence, making the substitution �b � � exp�ikzz� and neglecting
	2��	z2, equation (5.2.2.1) becomes
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and ��x, y, 0� � exp�i�kxx� kyy��.
Equation (5.2.3.1) is of the form of a two-dimensional time-

dependent Schrödinger equation, with the z coordinate replacing
time. This form has been extensively discussed. For instance,
Howie (1966) derived what is essentially this equation using an
expansion in Bloch waves, Berry (1971) used a Green function in a
detailed and rigorous derivation, and Goodman & Moodie (1974),
using methods due to Feynman, derived the equation as the limit of
the multislice recurrence relation. A method due to Corones et al.
(1982) brings out the relationship between the HEED and LEED
equations. Equation (5.2.2.1) is cast in the form of a first-order
system,
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A splitting matrix is introduced to separate the wavefunction into
the forward and backward components, ��b , and the fast part of the
phase is factored out, so that ��b � �� exp��ikzz�. In the resulting
matrix differential equation, the off-diagonal terms are seen to be
small for fast electrons, and equation (5.2.2.1) reduces to the pair of
equations

	��

	z
� �i
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2kz

��2
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��� �5�2�3�2�

The equation for �� is the Lontovich & Fock (1946) parabolic
equation.

5.2.4. Evolution operator

Equation (5.2.3.1) is a standard and much studied form, so that
many techniques are available for the construction of solutions. One
of the most direct utilizes the causal evolution operator. A recent
account is given by Gratias & Portier (1983).
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In terms of the ‘Hamiltonian’ of the two-dimensional system,

�H�z�  1
2kz

��2
x
 y � K2

0� � ��,

the evolution operator U�z, z0�, defined by ��z� � U�z, z0��0,
satisfies

i
	

	z
U�z, z0� � H�z�U�z, z0�, �5�2�4�1a�

or

U�z, z0� � 1� i
�z
z0

U�z, z1�H�z1� dz1� �5�2�4�1b�

5.2.5. Projection approximation – real-space solution

Many of the features of the more general solutions are retained in
the practically important projection approximation in which
��x, y, z� is replaced by its projected mean value �p�x, y�, so that
the corresponding Hamiltonian Hp does not depend on z. Equation
(5.2.4.1b) can then be solved directly by iteration to give

Up�z, z0� � exp��iHp�z� z0��, �5�2�5�1�
and the solution may be verified by substitution into equation
(5.2.4.1a).

Many of the results of dynamical theory can be obtained by
expansion of equation (5.2.5.1) as

Up  1� iHp�z� z0� � i2

2�
H2

p�z� z0� � � � � ,

followed by the direct evaluation of the differentials. Such
expressions can be used, for instance, to explore symmetries in
image space.

5.2.6. Semi-reciprocal space

In the derivation of electron-diffraction equations, it is more usual
to work in semi-reciprocal space (Tournarie, 1962). This can be
achieved by transforming equation (5.2.2.1) with respect to x and y
but not with respect to z, to obtain Tournarie’s equation

d2�U�
dz2

� �Mb�z��U�� �5�2�6�1a�

Here �U� is the column vector of scattering amplitudes and Mb�z� is
a matrix, appropriate to LEED, with k vectors as diagonal elements
and Fourier coefficients of the potential as nondiagonal elements.

This equation is factorized in a manner parallel to that used on the
real-space equation [equation (5.2.3.1)] (Lynch & Moodie, 1972) to
obtain Tournarie’s forward-scattering equation

d�U��
dz

� �iM��z��U��, �5�2�6�1b�

where

M��z� � ��K� �1�2�K�1V �z�	,
�Kij	 � �ijKi,

and

�Vij	 � 2kz
�

l
Vi�j exp��2�ilz�,

where Vi  �vi are the scattering coefficients and vi are the structure
amplitudes in volts. In order to simplify the electron-diffraction
expression, the third crystallographic index ‘l’ is taken to represent
the periodicity along the z direction.

The double solution involving M of equation (5.2.6.1b) is of
interest in displaying the symmetry of reciprocity, and may be
compared with the double solution obtained for the real-space
equation [equation (5.2.3.2)]. Normally the M� solution will be
followed through to give the fast-electron forward-scattering
equations appropriate in HEED. M�, however, represents the
equivalent set of equations corresponding to the z reversed
reciprocity configuration. Reciprocity solutions will yield diffrac-
tion symmetries in the forward direction when coupled with crystal-
inverting symmetries (Section 2.5.3).

Once again we set out to solve the forward-scattering equation
(5.2.6.1a,b) now in semi-reciprocal space, and define an operator
Q�z� [compare with equation (5.2.4.1a)] such that

�Uz� � Qz�U0� with U0 � �0�;
i.e., Qz is an operator that, when acting on the incident wavevector,
generates the wavefunction in semi-reciprocal space.

Again, the differential equation can be transformed into an
integral equation, and once again this can be iterated. In the
projection approximation, with M independent of z, the solution can
be written as

Qp � exp�iMp�z� z0���
A typical off-diagonal element is given by Vi�j� cos �i, where �i is
the angle through which the beam is scattered. It is usual in the
literature to find that cos �i has been approximated as unity, since
even the most accurate measurements are, so far, in error by much
more than this amount.

This expression for Qp is Sturkey’s (1957) solution, a most useful
relation, written explicitly as

�U� � exp�iMpT��0� �5�2�6�2�
with T the thickness of the crystal, and �0�, the incident state, a
column vector with the first entry unity and the rest zero.

S � exp�iMpT�
is a unitary matrix, so that in this formulation scattering is described
as rotation in Hilbert space.

5.2.7. Two-beam approximation

In the two-beam approximation, as an elementary example,
equation (5.2.6.2) takes the form

u0

uh

� �
� exp i

0 V ��h�
V �h� Kh

� �
T

	 

0
1

� �
� �5�2�7�1�

If this expression is expanded directly as a Taylor series, it proves
surprisingly difficult to sum. However, the symmetries of Clifford
algebra can be exploited by summing in a Pauli basis thus,

exp i
0 V ��h�

V �h� Kh

� �
T

	 


� exp i
KhT

2

	 

E exp i

Kh

2
�3 � V R�1 � V I�2

� �
T

	 

�

Here, the � i are the Pauli matrices

�1 �
0 1

1 0

� �
, �2 �

0 i

�i 0

� �
, �3 �

�1 0

0 1

� �
,

E � 1 0

0 1

� �
,

and V R , V I are the real and imaginary parts of the complex
scattering coefficients appropriate to a noncentrosymmetric crystal,
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