International
Tables for Crystallography Volume B Reciprocal space Edited by U. Shmueli © International Union of Crystallography 2010 
International Tables for Crystallography (2010). Vol. B, ch. 1.3, p. 29

It is defined by the family of seminormswhere p is a multiindex and K a compact subset of Ω. A fundamental system S of neighbourhoods of the origin in is given by subsets of of the formfor all natural integers m, positive real , and compact subset K of Ω. Since a countable family of compact subsets K suffices to cover Ω, and since restricted values of of the form lead to the same topology, S is equivalent to a countable system of neighbourhoods and hence is metrizable.
Convergence in may thus be defined by means of sequences. A sequence in will be said to converge to 0 if for any given there exists such that whenever ; in other words, if the and all their derivatives converge to 0 uniformly on any given compact K in Ω.