International Tables for Crystallography (2010). Vol. B, Section 1.3.2.3.3.4, p. 30.

1. GENERAL RELATIONSHIPS AND TECHNIQUES

where (m) is an increasing sequence (m_{ν}) of integers tending to $+\infty$ and (ε) is a decreasing sequence (ε_{ν}) of positive reals tending to 0, as $\nu \to \infty$.

This topology is *not metrizable*, because the sets of sequences (m) and (ε) are essentially uncountable. It can, however, be shown to be the *inductive limit* of the topology of the subspaces \mathscr{D}_K , in the following sense: V is a neighbourhood of the origin in \mathscr{D} if and only if its intersection with \mathscr{D}_K is a neighbourhood of the origin in \mathscr{D}_K for any given compact K in Ω .

A sequence (φ_{ν}) in \mathcal{D} will thus be said to converge to 0 in \mathcal{D} if all the φ_{ν} belong to some \mathcal{D}_{K} (with K a compact subset of Ω independent of ν) and if (φ_{ν}) converges to 0 in \mathcal{D}_{K} .

As a result, a complex-valued functional T on \mathscr{D} will be said to be continuous for the topology of \mathscr{D} if and only if, for any given compact K in Ω , its restriction to \mathscr{D}_K is continuous for the topology of \mathscr{D}_K , *i.e.* maps convergent sequences in \mathscr{D}_K to convergent sequences in \mathbb{C} .

This property of \mathcal{D} , *i.e.* having a nonmetrizable topology which is the inductive limit of metrizable topologies in its subspaces \mathcal{D}_K , conditions the whole structure of distribution theory and dictates that of many of its proofs.

1.3.2.3.3.4. Topologies on $\mathscr{E}^{(m)}, \mathscr{D}_k^{(m)}, \mathscr{D}^{(m)}$

These are defined similarly, but only involve conditions on derivatives up to order m.

1.3.2.3.4. Definition of distributions

A distribution T on Ω is a linear form over $\mathcal{D}(\Omega)$, *i.e.* a map

$$T: \varphi \longmapsto \langle T, \varphi \rangle$$

which associates linearly a complex number $\langle T, \varphi \rangle$ to any $\varphi \in \mathscr{D}(\Omega)$, and which is *continuous* for the topology of that space. In the terminology of Section 1.3.2.2.6.2, *T* is an element of $\mathscr{D}'(\Omega)$, the *topological dual* of $\mathscr{D}(\Omega)$.

Continuity over \mathcal{D} is equivalent to continuity over \mathcal{D}_K for all compact *K* contained in Ω , and hence to the condition that for any sequence (φ_{ν}) in \mathcal{D} such that

(i) Supp φ_{ν} is contained in some compact K independent of ν , (ii) the sequences $(|D^{\mathbf{p}}\varphi_{\nu}|)$ converge uniformly to 0 on K for all multi-indices **p**;

then the sequence of complex numbers $\langle T, \varphi_{\nu} \rangle$ converges to 0 in \mathbb{C} .

If the continuity of a distribution T requires (ii) for $|\mathbf{p}| \leq m$ only, T may be defined over $\mathscr{Q}^{(m)}$ and thus $T \in \mathscr{Q}^{\prime(m)}$; T is said to be a *distribution of finite order m*. In particular, for m = 0, $\mathscr{Q}^{(0)}$ is the space of continuous functions with compact support, and a distribution $T \in \mathscr{Q}^{\prime(0)}$ is a (Radon) *measure* as used in the theory of integration. Thus measures are particular cases of distributions.

Generally speaking, the *larger* a space of test functions, the *smaller* its topological dual:

$$m < n \Rightarrow \mathscr{D}^{(m)} \supset \mathscr{D}^{(n)} \Rightarrow \mathscr{D}^{\prime(n)} \supset \mathscr{D}^{\prime(m)}.$$

This clearly results from the observation that if the φ 's are allowed to be less regular, then less wildness can be accommodated in T if the continuity of the map $\varphi \mapsto \langle T, \varphi \rangle$ with respect to φ is to be preserved.

1.3.2.3.5. First examples of distributions

(i) The linear map $\varphi \mapsto \langle \delta, \varphi \rangle = \varphi(\mathbf{0})$ is a measure (*i.e.* a zeroth-order distribution) called Dirac's measure or (improperly) Dirac's ' δ -function'.

(ii) The linear map $\varphi \mapsto \langle \delta_{(\mathbf{a})}, \varphi \rangle = \varphi(\mathbf{a})$ is called Dirac's measure at point $\mathbf{a} \in \mathbb{R}^n$.

(iii) The linear map $\varphi \mapsto (-1)^p D^p \varphi(\mathbf{a})$ is a distribution of order $m = |\mathbf{p}| > 0$, and hence is not a measure.

(iv) The linear map $\varphi \mapsto \sum_{\nu>0} \varphi^{(\nu)}(\nu)$ is a distribution of infinite order on \mathbb{R} : the order of differentiation is bounded for each φ (because φ has compact support) but is not as φ varies.

(v) If (\mathbf{p}_{ν}) is a sequence of multi-indices $\mathbf{p}_{\nu} = (p_{1\nu}, \dots, p_{n\nu})$ such that $|\mathbf{p}_{\nu}| \to \infty$ as $\nu \to \infty$, then the linear map $\varphi \mapsto \sum_{\nu>0} (D^{\mathbf{p}_{\nu}}\varphi)(\mathbf{p}_{\nu})$ is a distribution of infinite order on \mathbb{R}^{n} .

1.3.2.3.6. Distributions associated to locally integrable functions

Let f be a complex-valued function over Ω such that $\int_{K} |f(\mathbf{x})| d^{n}\mathbf{x}$ exists for any given compact K in Ω ; f is then called *locally integrable*.

The linear mapping from $\mathscr{D}(\Omega)$ to \mathbb{C} defined by

$$\varphi \longmapsto \int_{\Omega} f(\mathbf{x}) \varphi(\mathbf{x}) \, \mathrm{d}^n \mathbf{x}$$

may then be shown to be continuous over $\mathscr{Q}(\Omega)$. It thus defines a *distribution* $T_f \in \mathscr{Q}'(\Omega)$:

$$\langle T_f, \varphi \rangle = \int_{\Omega} f(\mathbf{x}) \varphi(\mathbf{x}) \, \mathrm{d}^n \mathbf{x}.$$

As the continuity of T_f only requires that $\varphi \in \mathcal{D}^{(0)}(\Omega)$, T_f is actually a Radon measure.

It can be shown that two locally integrable functions f and g define the same distribution, *i.e.*

$$\langle T_f, \varphi \rangle = \langle T_K, \varphi \rangle$$
 for all $\varphi \in \mathscr{D}$,

if and only if they are equal almost everywhere. The classes of locally integrable functions modulo this equivalence form a vector space denoted $L^1_{loc}(\Omega)$; each element of $L^1_{loc}(\Omega)$ may therefore be identified with the distribution T_f defined by any one of its representatives f.

1.3.2.3.7. Support of a distribution

A distribution $T \in \mathscr{D}'(\Omega)$ is said to *vanish* on an open subset ω of Ω if it vanishes on all functions in $\mathscr{D}(\omega)$, *i.e.* if $\langle T, \varphi \rangle = 0$ whenever $\varphi \in \mathscr{D}(\omega)$.

The *support* of a distribution T, denoted Supp T, is then defined as the complement of the set-theoretic union of those open subsets ω on which T vanishes; or equivalently as the smallest closed subset of Ω outside which T vanishes.

When $T = T_f$ for $f \in L^1_{loc}(\Omega)$, then Supp T = Supp f, so that the two notions coincide. Clearly, if Supp T and Supp φ are disjoint subsets of Ω , then $\langle T, \varphi \rangle = 0$.

It can be shown that any distribution $T \in \mathcal{D}'$ with compact support may be extended from \mathcal{D} to \mathscr{E} while remaining continuous, so that $T \in \mathscr{E}'$; and that conversely, if $S \in \mathscr{E}'$, then its restriction T to \mathcal{D} is a distribution with compact support. Thus, the topological dual \mathscr{E}' of \mathscr{E} consists of those distributions in \mathcal{D}' which have compact support. This is intuitively clear since, if the condition of having compact support is fulfilled by T, it needs no longer be required of φ , which may then roam through \mathscr{E} rather than \mathcal{D} .

1.3.2.3.8. Convergence of distributions

A sequence (T_j) of distributions will be said to converge in \mathscr{D}' to a distribution T as $j \to \infty$ if, for any given $\varphi \in \mathscr{D}$, the sequence of complex numbers $(\langle T_j, \varphi \rangle)$ converges in \mathbb{C} to the complex number $\langle T, \varphi \rangle$.

number $\langle T, \varphi \rangle$. A series $\sum_{j=0}^{\infty} T_j$ of distributions will be said to converge in \mathscr{D}' and to have distribution S as its sum if the sequence of partial sums $S_k = \sum_{j=0}^k$ converges to S.