Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 1.3, p. 48   | 1 | 2 |

Section Relation between lattice distributions

G. Bricognea

aGlobal Phasing Ltd, Sheraton House, Suites 14–16, Castle Park, Cambridge CB3 0AX, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France Relation between lattice distributions

| top | pdf |

The above relations between lattices may be rewritten in terms of the corresponding lattice distributions as follows:[\displaylines{\quad (\hbox{i}) \hfill R_{\bf A} = {1 \over |\!\det {\bf D}|} {\bf D}^{\#} R_{\bf B}^{*} \,\hfill\cr \quad (\hbox{ii}) \hfill R_{\bf B} = T_{{\bf B} / {\bf A}} * R_{\bf A}\qquad \hfill\cr \quad (\hbox{i})^{*} \hfill \,\,R_{\bf B}^{*} = {1 \over |\!\det {\bf D}|} ({\bf D}^{T})^{\#} R_{\bf A}^{*} \hfill\cr \quad (\hbox{ii})^{*} \hfill R_{\bf A}^{*} =T_{{\bf A} / {\bf B}}^{*} * R_{\bf B}^{*} \qquad\,\,\hfill}]where[T_{{\bf B} / {\bf A}} = {\textstyle\sum\limits_{{\boldell} \in \Lambda_{\bf B} / \Lambda_{\bf A}}} \delta_{({\boldell})}]and[T_{{\bf A}/{\bf B}}^{*} = {\textstyle\sum\limits_{{\boldell}^{*} \in \Lambda_{\bf A}^{*} / \Lambda_{\bf B}^{*}}} \delta_{({\boldell}^{*})}]are (finite) residual-lattice distributions. We may incorporate the factor [1/|\!\det {\bf D}|] in (i) and [(\hbox{i})^{*}] into these distributions and define[S_{{\bf B}/{\bf A}} = {1 \over |\!\det {\bf D}|} T_{{\bf B}/{\bf A}},\quad S_{{\bf A}/{\bf B}}^{*} = {1 \over |\!\det {\bf D}|} T_{{\bf A}/{\bf B}}^{*}.]

Since [|\!\det {\bf D}| = [\Lambda_{\bf B}: \Lambda_{\bf A}] = [\Lambda_{\bf A}^{*}: \Lambda_{\bf B}^{*}]], convolution with [S_{{\bf B}/{\bf A}}] and [S_{{\bf A}/{\bf B}}^{*}] has the effect of averaging the translates of a distribution under the elements (or `cosets') of the residual lattices [\Lambda_{\bf B}/\Lambda_{\bf A}] and [\Lambda_{\bf A}^{*}/\Lambda_{\bf B}^{*}], respectively. This process will be called `coset averaging'. Eliminating [R_{\bf A}] and [R_{\bf B}] between (i) and (ii), and [R_{\bf A}^{*}] and [R_{\bf B}^{*}] between [(\hbox{i})^{*}] and [(\hbox{ii})^{*}], we may write:[\displaylines{\quad (\hbox{i}')\hfill \! R_{\bf A} = {\bf D}^{\#} (S_{{\bf B}/{\bf A}} * R_{\bf A})\,\,\,\hfill\cr \quad (\hbox{ii}')\hfill \! R_{\bf B} = S_{{\bf B}/{\bf A}} * ({\bf D}^{\#} R_{\bf B})\,\,\,\,\hfill\cr \quad (\hbox{i}')^{*}\hfill R_{\bf B}^{*} = ({\bf D}^{T})^{\#} (S_{{\bf A}/{\bf B}}^{*} * R_{\bf B}^{*}) \hfill\cr \quad (\hbox{ii}')^{*}\hfill R_{\bf A}^{*} = S_{{\bf A}/{\bf B}}^{*} * [({\bf D}^{T})^{\#} R_{\bf A}^{*}]. \,\hfill}]These identities show that period subdivision by convolution with [S_{{\bf B}/{\bf A}}] (respectively [S_{{\bf A}/{\bf B}}^{*}]) on the one hand, and period decimation by `dilation' by [{\bf D}^{\#}] on the other hand, are mutually inverse operations on [R_{\bf A}] and [R_{\bf B}] (respectively [R_{\bf A}^{*}] and [R_{\bf B}^{*}]).

to end of page
to top of page