International
Tables for Crystallography Volume B Reciprocal space Edited by U. Shmueli © International Union of Crystallography 2010 
International Tables for Crystallography (2010). Vol. B, ch. 1.3, pp. 104106

The methods of probability theory just surveyed were applied to various problems formally similar to the crystallographic phase problem [e.g. the `problem of the random walk' of Pearson (1905)] by Rayleigh (1880, 1899, 1905, 1918, 1919) and Kluyver (1906). They became the basis of the statistical theory of communication with the classic papers of Rice (1944, 1945).
The Gram–Charlier and Edgeworth series were introduced into crystallography by Bertaut (1955a,b,c, 1956a) and by Klug (1958), respectively, who showed them to constitute the mathematical basis of numerous formulae derived by Hauptman & Karle (1953). The saddlepoint approximation was introduced by Bricogne (1984) and was shown to be related to variational methods involving the maximization of certain entropy criteria. This connection exhibits most of the properties of the Fourier transform at play simultaneously, and will now be described as a final illustration.
References
Barakat, R. (1974). Firstorder statistics of combined random sinusoidal waves with applications to laser speckle patterns. Opt. Acta, 21, 903–921.Bertaut, E. F. (1955a). La méthode statistique en cristallographie. I. Acta Cryst. 8, 537–543.
Bertaut, E. F. (1955b). La méthode statistique en cristallographie. II. Quelques applications. Acta Cryst. 8, 544–548.
Bertaut, E. F. (1955c). Fonction de répartition: application à l'approache directe des structures. Acta Cryst. 8, 823–832.
Bertaut, E. F. (1956a). Les groupes de translation non primitifs et la méthode statistique. Acta Cryst. 9, 322.
Bricogne, G. (1984). Maximum entropy and the foundations of direct methods. Acta Cryst. A40, 410–445.
Bricogne, G. (1988). A Bayesian statistical theory of the phase problem. I. A multichannel maximum entropy formalism for constructing generalised joint probability distributions of structure factors. Acta Cryst. A44, 517–545.
Hauptman, H. & Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. ACA Monograph No. 3. Pittsburgh: Polycrystal Book Service.
Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630.
Jaynes, E. T. (1968). Prior probabilities. IEEE Trans. SSC, 4, 227–241.
Jaynes, E. T. (1983). Papers on Probability, Statistics and Statistical Physics. Dordrecht: Kluwer Academic Publishers.
Klug, A. (1958). Joint probability distributions of structure factors and the phase problem. Acta Cryst. 11, 515–543.
Kluyver, J. C. (1906). A local probability problem. K. Ned. Akad. Wet. Proc. 8, 341–350.
Pearson, K. (1905). The problem of the random walk. Nature (London), 72, 294, 342.
Rayleigh (J. W. Strutt), Lord (1880). On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Philos. Mag. 10, 73–78.
Rayleigh (J. W. Strutt), Lord (1899). On James Bernoulli's theorem in probabilities. Philos. Mag. 47, 246–251.
Rayleigh (J. W. Strutt), Lord (1905). The problem of the random walk. Nature (London), 72, 318.
Rayleigh (J. W. Strutt), Lord (1918). On the light emitted from a random distribution of luminous sources. Philos. Mag. 36, 429–449.
Rayleigh (J. W. Strutt), Lord (1919). On the problem of random flights in one, two or three dimensions. Philos. Mag. 37, 321–347.
Reif, F. (1965). Fundamentals of Statistical and Thermal Physics, Appendix A.6. New York: McGrawHill.
Rice, S. O. (1944, 1945). Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 283–332 (parts I and II); 24, 46–156 (parts III and IV). [Reprinted in Selected Papers on Noise and Stochastic Processes (1954), edited by N. Wax, pp. 133–294. New York: Dover Publications.]
Shmueli, U. & Weiss, G. H. (1985). Exact joint probability distribution for centrosymmetric structure factors. Derivation and application to the Σ_{1} relationship in the space group . Acta Cryst. A41, 401–408.
Shmueli, U. & Weiss, G. H. (1986). Exact joint distribution of , and , and the probability for the positive sign of the triple product in the space group . Acta Cryst. A42, 240–246.
Shmueli, U. & Weiss, G. H. (1987). Exact randomwalk models in crystallographic statistics. III. Distributions of for space groups of low symmetry. Acta Cryst. A43, 93–98.
Shmueli, U. & Weiss, G. H. (1988). Exact randomwalk models in crystallographic statistics. IV. P.d.f.'s of allowing for atoms in special positions. Acta Cryst. A44, 413–417.
Shmueli, U., Weiss, G. H. & Kiefer, J. E. (1985). Exact randomwalk models in crystallographic statistics. II. The bicentric distribution for the space group . Acta Cryst. A41, 55–59.
Shmueli, U., Weiss, G. H., Kiefer, J. E. & Wilson, A. J. C. (1984). Exact randomwalk models in crystallographic statistics. I. Space groups and P1. Acta Cryst. A40, 651–660.