International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 1.5, pp. 175-192   | 1 | 2 |
https://doi.org/10.1107/97809553602060000762

Chapter 1.5. Crystallographic viewpoints in the classification of space-group representations

M. I. Aroyoa* and H. Wondratschekb

aDepartamento de Fisíca de la Materia Condensada, Facultad de Cienca y Technología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain , and bInstitut für Kristallographie, Universität, D-76128 Karlsruhe, Germany
Correspondence e-mail:  wmpararm@lg.ehu.es

References

Altmann, S. L. (1977). Induced Representations in Crystals and Molecules. London: Academic Press.
Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. (2006). Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Cryst. A62, 115–128.
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Z. Kristallogr. 221, 15–27.
Aroyo, M. I. & Wondratschek, H. (1995). Crystallographic viewpoints in the classification of space-group representations. Z. Kristallogr. 210, 243–254.
Bilbao Crystallographic Server (1998). http://www.cryst.ehu.es/ .
Bouckaert, L. P., Smoluchowski, R. & Wigner, E. P. (1936). Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58–67.
Boyle, L. L. (1986). The classification of space group representations. In Proceedings of the 14th International Colloquium on Group-Theoretical Methods in Physics, pp. 405–408. Singapore: World Scientific.
Bradley, C. J. & Cracknell, A. P. (1972). The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups. Oxford: Clarendon Press.
Cracknell, A. P., Davies, B. L., Miller, S. C. & Love, W. F. (1979). Kronecker Product Tables, Vol. 1, General Introduction and Tables of Irreducible Representations of Space Groups. New York: IFI/Plenum.
Davies, B. L. & Cracknell, A. P. (1976). Some comments on and addenda to the tables of irreducible representations of the classical space groups published by S. C. Miller and W. F. Love. Acta Cryst. A32, 901–903.
Davies, B. L. & Dirl, R. (1987). Various classification schemes for irreducible space group representations. In Proceedings of the 15th International Colloquium on Group-Theoretical Methods in Physics, edited by R. Gilmore, pp. 728–733. Singapore: World Scientific.
Delaunay, B. (1933a). Neue Darstellung der geometrischen Kristallographie. Z. Kristallogr. 84, 109–149.
Delaunay, B. (1933b). Berichtigung zur Arbeit “Neue Darstellung der geometrischen Kristallographie”. Z. Kristallogr. 85, 332.
International Tables for Crystallography (2005). Vol. A, Space-Group Symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
Jan, J.-P. (1972). Space groups for Fermi surfaces. Can. J. Phys. 50, 925–927.
Jansen, L. & Boon, M. (1967). Theory of Finite Groups. Applications in Physics: Symmetry Groups of Quantum Mechanical Systems. Amsterdam: North-Holland.
Janssen, T. (2003). International Tables for Crystallography, Vol. D, Physical Properties of Crystals, edited by A. Authier, ch. 1.2, Representations of crystallographic groups. Dordrecht: Kluwer Academic Publishers.
Kovalev, O. V. (1986). Irreducible and Induced Representations and Co-representations of Fedorov Groups. Moscow: Nauka.
Lomont, J. S. (1959). Applications of Finite Groups. New York: Academic Press.
Miller, S. C. & Love, W. F. (1967). Tables of Irreducible Representations of Space Groups and Co-representations of Magnetic Space Groups. Boulder: Pruett Press.
Raghavacharyulu, I. V. V. (1961). Representations of space groups. Can. J. Phys. 39, 830–840.
Rosen, J. (1981). Resource letter SP-2: Symmetry and group theory in physics. Am. J. Phys. 49, 304–319.
Slater, L. S. (1962). Quantum Theory of Molecules and Solids, Vol. 2. Amsterdam: McGraw-Hill.
Smith, J. V. (1982). Geometrical and Structural Crystallography. New York: John Wiley & Sons.
Stokes, H. T. & Hatch, D. M. (1988). Isotropy Subgroups of the 230 Crystallographic Space Groups. Singapore: World Scientific.
Stokes, H. T., Hatch, D. M. & Nelson, H. M. (1993). Landau, Lifshitz, and weak Lifshitz conditions in the Landau theory of phase transitions in solids. Phys. Rev. B, 47, 9080–9083.
Wintgen, G. (1941). Zur Darstellungstheorie der Raumgruppen. Math. Ann. 118, 195–215.
Zak, J., Casher, A., Glück, M. & Gur, Y. (1969). The Irreducible Representations of Space Groups. New York: Benjamin.