International Tables for Crystallography (2010). Vol. B, ch. 1.5, pp. 175-192   | 1 | 2 |
https://doi.org/10.1107/97809553602060000762

Chapter 1.5. Crystallographic viewpoints in the classification of space-group representations

Chapter index

Adjusted coefficients 1.5.4.2
Affine space-group type 1.5.3.2
Arithmetic crystal class 1.5.3.2
Arms of star 1.5.3.4
Asymmetric unit 1.5.4.2
Bases
primitive 1.5.3.2
Basic domain 1.5.4.2
Born–von Karman boundary conditions 1.5.3.3
Brillouin zone
first 1.5.3.4
Column part 1.5.3.2
Completely reducible matrix group 1.5.3.1
Conventional coefficients 1.5.4.2
Coordinate systems 1.5.3.2
Crystal class, arithmetic 1.5.3.2
Dimension of a representation 1.5.3.1
Direct space 1.5.3.2
Domain
basic 1.5.4.2
minimal 1.5.4.2
of influence 1.5.3.4
representation 1.5.4.2
Equivalent matrix groups 1.5.3.1
Finite space group 1.5.3.3
First Brillouin zone 1.5.3.4
Flagpole 1.5.5.1
Fundamental region 1.5.3.4
General k vector 1.5.3.4
Holohedral point group 1.5.4.2
Holosymmetric space group 1.5.4.2
Homomorphism 1.5.3.1
Ideal crystal 1.5.3.2
Irreducible matrix group 1.5.3.1
Irreducible representation 1.5.3.1
Irreps 1.5.2
type of 1.5.4.3
Isomorphism 1.5.3.1
k vector
general 1.5.3.4
special 1.5.3.4
uni-arm 1.5.4.3
k-vector type 1.5.4.3
Lattice
reciprocal 1.5.3.3, 1.5.3.3
Little co-group 1.5.3.4, 1.5.4.3
Little group 1.5.3.4
Maschke, theorem of 1.5.3.1
Matrix–column pair 1.5.3.2
Matrix groups 1.5.3.1
completely reducible 1.5.3.1
equivalent 1.5.3.1
irreducible 1.5.3.1
reducible 1.5.3.1
unitary 1.5.3.1
Matrix part 1.5.3.2
Minimal domain 1.5.4.2
Multiplicity 1.5.4.3
Orbit of k 1.5.3.4
Periodicity 1.5.3.2
Point groups 1.5.3.2
holohedral 1.5.4.2
Primitive basis 1.5.3.2
Primitive coefficients 1.5.4.2
Real crystal 1.5.3.2
Reciprocal lattice 1.5.3.3, 1.5.3.3
Reciprocal-space group 1.5.2, 1.5.3.4, A1.5.1
Reducible matrix group 1.5.3.1
Representation, irreducible 1.5.3.1
Representation domain 1.5.4.2
Schur-Auerbach, theorem of 1.5.3.1
Site-symmetry group 1.5.4.2
Space groups 1.5.3.2
finite 1.5.3.3
holosymmetric 1.5.4.2
symmorphic 1.5.3.2
Space-group types
affine 1.5.3.2
crystallographic 1.5.3.2
Special k vector 1.5.3.4
Star
arms of 1.5.3.4
of k 1.5.3.4
Symmetry 1.5.3.1
Symmetry group 1.5.3.1
Symmetry lines 1.5.4.3
Symmetry operation 1.5.3.1
Symmetry planes 1.5.4.3
Symmetry points 1.5.4.3
Symmorphic space groups 1.5.3.2
Translation subgroup 1.5.3.2
Type of irreps 1.5.4.3
Uni-arm k vector 1.5.4.3
Unitary matrix group 1.5.3.1
Unit cell 1.5.3.4, 1.5.4.1
Vector lattice 1.5.3.2
Wigner–Seitz cell 1.5.3.4
Wing 1.5.5.1
Wintgen letter 1.5.4.3
Wintgen position 1.5.4.3
Wintgen symbol 1.5.4.3
Wyckoff letter 1.5.4.2
Wyckoff position 1.5.4.2