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u ¼ nY=ðmZÞ ð2:1:6:9Þ

pðuÞ du ¼ �2½nY=ðmZÞ; n;m� d½nY=ðmZÞ�; ð2:1:6:10Þ

where �2 is a beta distribution of the second kind, Y is given by
equation (2.1.6.2) and Z by

Z ¼ Km=m; ð2:1:6:11Þ

where n is the number of intensities included in the numerator
and m is the number in the denominator. The expected value of
Y=Z is then

hY=Zi ¼
m

m� 1
¼ 1þ

1

m
þ . . . ð2:1:6:12Þ

with variance

�2 ¼
ðnþm� 1Þm2

ðm� 1Þ2ðm� 2Þn
: ð2:1:6:13Þ

One sees that Y=Z is a biased estimate of the scaling factor
between two sets of intensities and the bias, of the order of m�1,
depends only on the number of intensities averaged in the
denominator. This may seem odd at first sight, but it becomes
plausible when one remembers that the mean of a quantity is an
unbiased estimator of itself, but the reciprocal of a mean is not an
unbiased estimator of the mean of a reciprocal. The mean exists
only if m> 1 and the variance only for m> 2.

In the centric case, the expression for the distribution of the
ratio of the two means Y and Z becomes

pðuÞ du ¼ �2½nY=ðmZÞ; n=2;m=2� d½nY=ðmZÞ� ð2:1:6:14Þ

with the expected value of Y=Z equal to

hY=Zi ¼
m

m� 2
¼ 1þ

2

m
þ . . . ð2:1:6:15Þ

and with its variance equal to

�2 ¼
2ðnþm� 2Þm2

ðm� 2Þ2ðm� 4Þn
: ð2:1:6:16Þ

For the same number of reflections, the bias in hY=Zi and the
variance for the centric distribution are considerably larger than
for the acentric. For both distributions the variance of the scaling
factor approaches zero when n and m become large. The
variances are large for m small, in fact ‘infinite’ if the number of
terms averaged in the denominator is sufficiently small. These
biases are readily removed by multiplying Y=Z by ðm� 1Þ=m or
ðm� 2Þ=m. Many methods of estimating scaling factors – perhaps
most – also introduce bias (Wilson, 1975; Lomer & Wilson, 1975;
Wilson, 1976, 1978c) that is not so easily removed. Wilson (1986a)
has given reasons for supposing that the bias of the ratio (2.1.6.7)
approximates to

1þ
�2ðIÞ

mhIi2
; ð2:1:6:17Þ

whatever the intensity distribution. Equations (2.1.6.12) and
(2.1.6.15) are consistent with this.

2.1.6.3. Intensities scaled to the local average

When the Gi’s are a subset of the Hi’s, the beta distributions of
the second kind are replaced by beta distributions of the first
kind, with means and variances readily found from Table 2.1.5.1.
The distribution of such a ratio is chiefly of interest when Y
relates to a single reflection and Z relates to a group of m
intensities including Y. This corresponds to normalizing inten-
sities to the local average. Its distribution is

pðI=hIiÞ dðI=hIiÞ ¼ �1ðI=nhIi; 1; n� 1Þ dðI=nhIiÞ ð2:1:6:18Þ

in the acentric case, with an expected value of I=hIi of unity;
there is no bias, as is obvious a priori. The variance of I=hIi is

�2 ¼
n� 1

nþ 1
; ð2:1:6:19Þ

which is less than the variance of the intensities normalized to an
‘infinite’ population by a fraction of the order of 2=n. Unlike the
variance of the scaling factor, the variance of the normalized
intensity approaches unity as n becomes large. For intensities
having a centric distribution, the distribution normalized to the
local average is given by

pðI=hIiÞ dðI=hIiÞ ¼ �1½I=nhIi; 1=2; ðn� 1Þ=2� dðI=nhIiÞ;

ð2:1:6:20Þ

with an expected value of I=hIi of unity and with variance

�2 ¼
2ðn� 1Þ

nþ 2
; ð2:1:6:21Þ

less than that for an ‘infinite’ population by a fraction of about
3=n.

Similar considerations apply to intensities normalized to � in
the usual way, since they are equal to those normalized to hIi
multiplied by hIi=�.

2.1.6.4. The use of normal approximations

Since Jn and Km [equations (2.1.6.1) and (2.1.6.8)] are sums of
identically distributed variables conforming to the conditions of
the central-limit theorem, it is tempting to approximate their
distributions by normal distributions with the correct mean and
variance. This would be reasonably satisfactory for the distribu-
tions of Jn and Km themselves for quite small values of n and m,
but unsatisfactory for the distribution of their ratio for any values
of n and m, even large. The ratio of two variables with normal
distributions is notorious for its rather indeterminate mean and
‘infinite’ variance, resulting from the ‘tail’ of the denominator
distributions extending through zero to negative values. The
leading terms of the ratio distribution are given by Kendall &
Stuart (1977, p. 288).

2.1.7. Non-ideal distributions: the correction-factor approach

2.1.7.1. Introduction

The probability density functions (p.d.f.’s) of the magnitude of
the structure factor, presented in Section 2.1.5, are based on the
central-limit theorem discussed above. In particular, the centric
and acentric p.d.f.’s given by equations (2.1.5.11) and (2.1.5.8),
respectively, are expected to account for the statistical properties
of diffraction patterns obtained from crystals consisting of nearly
equal atoms, which obey the fundamental assumptions of
uniformity and independence of the atomic contributions and are
not affected by noncrystallographic symmetry and dispersion. It
is also assumed there that the number of atoms in the asymmetric
unit is large. Distributions of structure-factor magnitudes which
are based on the central-limit theorem, and thus obey the above
assumptions, have been termed ‘ideal’, and the subjects of the
following sections are those distributions for which some of the
above assumptions/restrictions are not fulfilled; the latter distri-
butions will be called ‘non-ideal’.

We recall that the assumption of uniformity consists of the
requirement that the fractional part of the scalar product
hxþ kyþ lz be uniformly distributed over the [0, 1] interval,
which holds well if x; y; z are rationally independent (Hauptman
& Karle, 1953), and permits one to regard the atomic contribu-
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2. RECIPROCAL SPACE IN CRYSTAL-STRUCTURE DETERMINATION

tion to the structure factor as a random variable. This is of course
a necessary requirement for any statistical treatment. If, however,
the atomic composition of the asymmetric unit is widely
heterogeneous, the structure factor is then a sum of unequally
distributed random variables and the Lindeberg–Lévy version of
the central-limit theorem (cf. Section 2.1.4.4) cannot be expected
to apply. Other versions of this theorem might still predict a
normal p.d.f. of the sum, but at the expense of a correspondingly
large number of terms/atoms. It is well known that atomic
heterogeneity gives rise to severe deviations from ideal beha-
viour (e.g. Howells et al., 1950) and one of the aims of crystal-
lographic statistics has been the introduction of a correct
dependence on the atomic composition into the non-ideal p.d.f.’s
[for a review of the early work on non-ideal distributions see
Srinivasan & Parthasarathy (1976)]. A somewhat less well known
fact is that the dependence of the p.d.f.’s of jEj on space-group
symmetry becomes more conspicuous as the composition
becomes more heterogeneous (e.g. Shmueli, 1979; Shmueli &
Wilson, 1981). Hence both the composition and the symmetry
dependence of the intensity statistics are of interest. Other
problems, which likewise give rise to non-ideal p.d.f.’s, are the
presence of heavy atoms in (variable) special positions, hetero-
geneous structures with complete or partial noncrystallographic
symmetry, and the presence of outstandingly heavy dispersive
scatterers.

The need for theoretical representations of non-ideal p.d.f.’s is
exemplified in Fig. 2.1.7.1, which shows the ideal centric and
acentric p.d.f.’s together with a frequency histogram of jEj values,
recalculated for a centrosymmetric structure containing a
platinum atom in the asymmetric unit of P�11 (Faggiani et al., 1980).
Clearly, the deviation from the Gaussian p.d.f., predicted by the
central-limit theorem, is here very large and a comparison with
the possible ideal distributions can (in this case) lead to wrong
conclusions.

Two general approaches have so far been employed in deri-
vations of non-ideal p.d.f.’s which account for the above-
mentioned problems: the correction-factor approach, to be dealt
with in the following sections, and the more recently introduced
Fourier method, to which Section 2.1.8 is dedicated. In what
follows, we introduce briefly the mathematical background of the
correction-factor approach, apply this formalism to centric and
acentric non-ideal p.d.f.’s, and present the numerical values of the
moments of the trigonometric structure factor which permit an
approximate evaluation of such p.d.f.’s for all the three-
dimensional space groups.

2.1.7.2. Mathematical background

Suppose that pðxÞ is a p.d.f. which accurately describes the
experimental distribution of the random variable x, where x is
related to a sum of random variables and can be assumed to obey
(to some approximation) an ideal p.d.f., say pð0ÞðxÞ, based on the
central-limit theorem. In the correction-factor approach we seek
to represent pðxÞ as

pðxÞ ¼ pð0ÞðxÞ
P

k

dk fkðxÞ; ð2:1:7:1Þ

where dk are coefficients which depend on the cause of the
deviation of pðxÞ from the central-limit theorem approximation
and fkðxÞ are suitably chosen functions of x. A choice of the set
ffkg is deemed suitable, if only from a practical point of view, if it
allows the convenient introduction of the cause of the above
deviation of pðxÞ into the expansion coefficients dk. This
requirement is satisfied – also from a theoretical point of view –
by taking fkðxÞ as a set of polynomials which are orthogonal with
respect to the ideal p.d.f., taken as their weight function (e.g.
Cramér, 1951). That is, the functions fkðxÞ so chosen have to obey
the relationship

Rb

a

fkðxÞfmðxÞp
ð0ÞðxÞ dx ¼ �km ¼

1; if k ¼ m

0; if k 6¼ m

�

; ð2:1:7:2Þ

where ½a; b� is the range of existence of all the functions involved.
It can be readily shown that the coefficients dk are given by

dk ¼
Rb

a

fkðxÞpðxÞ dx ¼ hfkðxÞi ¼
Pk

n¼0

cðkÞn hx
ni; ð2:1:7:3Þ

where the brackets h i in equation (2.1.7.3) denote averaging with
respect to the unknown p.d.f. pðxÞ and cðkÞn is the coefficient of the
nth power of x in the polynomial fkðxÞ. The coefficients dk are
thus directly related to the moments of the non-ideal distribution
and the coefficients of the powers of x in the orthogonal poly-
nomials. The latter coefficients can be obtained by the Gram–
Schmidt procedure (e.g. Spiegel, 1974), or by direct use of the
Szegö determinants (e.g. Cramér, 1951), for any weight function
that has finite moments. However, the feasibility of the present
approach depends on our ability to obtain the moments hxni

without the knowledge of the non-ideal p.d.f., pðxÞ.

2.1.7.3. Application to centric and acentric distributions

We shall summarize here the non-ideal centric and acentric
distributions of the magnitude of the normalized structure factor
E (e.g. Shmueli & Wilson, 1981; Shmueli, 1982). We assume that
(i) all the atoms are located in general positions and have
rationally independent coordinates, (ii) all the scatterers are
dispersionless, and (iii) there is no noncrystallographic symmetry.
Arbitrary atomic composition and space-group symmetry are
admitted. The appropriate weight functions and the corre-
sponding orthogonal polynomials are

Non-ideal

pð0ÞðjEjÞ fkðxÞ distribution

ð2=�Þ1=2 expð�jEj2=2Þ He2kðjEjÞ=½ð2kÞ!�1=2 Centric

2jEj expð�jEj2Þ LkðjEj
2
Þ Acentric

ð2:1:7:4Þ
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Fig. 2.1.7.1. Atomic heterogeneity and intensity statistics. The histogram
appearing in this figure was constructed from jEj values which were
recalculated from atomic parameters published for the centrosymmetric
structure of C6H18Cl2N4O4Pt (Faggiani et al., 1980). The space group of the
crystal is P�11, Z ¼ 2, i.e. all the atoms are located in general positions. The
figure shows a comparison of the recalculated distribution of jEj with the
ideal centric [equation (2.1.5.11)] and acentric [equation (2.1.5.8)] p.d.f.’s,
denoted by �11 and 1, respectively.



2.1. STATISTICAL PROPERTIES OF THE WEIGHTED RECIPROCAL LATTICE

where Hek and Lk are Hermite and Laguerre polynomials,
respectively, as defined, for example, by Abramowitz & Stegun
(1972). Equations (2.1.7.2), (2.1.7.3) and (2.1.7.4) suffice for the
general formulation of the above non-ideal p.d.f.’s of jEj. Their
full derivation entails (i) the expression of a sufficient number of
moments of jEj in terms of absolute moments of the trigono-
metric structure factor (e.g. Shmueli & Wilson, 1981; Shmueli,
1982) and (ii) calculation of the latter moments for the various
symmetries (Wilson, 1978b; Shmueli & Kaldor, 1981, 1983). The
notation below is similar to that employed by Shmueli (1982).

These non-ideal p.d.f.’s of jEj, for which the first five expansion
terms are available, are given by

pcðjEjÞ ¼ pð0Þc ðjEjÞ 1þ
X1

k¼2

A2k

ð2kÞ!
He2kðjEjÞ

" #

ð2:1:7:5Þ

and

paðjEjÞ ¼ pð0Þa ðjEjÞ 1þ
X1

k¼2

ð�1ÞkB2k

k!
LkðjEj

2
Þ

" #

ð2:1:7:6Þ

for centrosymmetric and noncentrosymmetric space groups,
respectively, where pð0Þc ðjEjÞ and pð0Þa ðjEjÞ are the ideal centric and
acentric p.d.f.’s [see (2.1.7.4)] and the unified form of the coeffi-
cients A2k and B2k, for k = 2, 3, 4 and 5, is

A4

A6

A8

A10

or

or

or

or

B4 ¼ a4Q4

B6 ¼ a6Q6

B8 ¼ a8Q8 þ Uða24Q
2
4 � �

2
4 Þ

B10 ¼ a10Q10 þ Vða4a6Q4Q6 � �4�6Q10Þ

þW�24Q10

ð2:1:7:7Þ

(Shmueli, 1982), where U = 35 or 18, V= 210 or 100 and W = 3150
or 900 according as A2k or B2k is required, respectively, and the
other quantities in equation (2.1.7.7) are given below. The
composition-dependent terms in equations (2.1.7.7) are

Q2k ¼

Pm
j¼1 f 2k

j
Pm

n¼1 f 2n
� �k

; ð2:1:7:8Þ

where m is the number of atoms in the asymmetric unit,
fj; j ¼ 1; . . . ;m are their scattering factors, and the symmetry
dependence is expressed by the coefficients a2k in equation
(2.1.7.7), as follows:

a2k ¼ ð�1Þ
k�1
ðk� 1Þ!�k0 þ

Pk

p¼2

ð�1Þk�p
ðk� pÞ!�kp�2p; ð2:1:7:9Þ

where

�kp ¼
k

p

� �
ð2k� 1Þ!!

ð2p� 1Þ!!
or

k

p

� �
k!

p!
ð2:1:7:10Þ

according as the space group is centrosymmetric or noncen-
trosymmetric, respectively, and �2p in equation (2.1.7.9) is given
by

�2p ¼
hjTj2p

i

hjTj2ip
; ð2:1:7:11Þ

where hjTjki is the kth absolute moment of the trigonometric
structure factor

TðhÞ ¼
Pg

s¼1

exp½2�ihTðPsrþ tsÞ� � �ðhÞ þ i�ðhÞ: ð2:1:7:12Þ

In equation (2.1.7.12), g is the number of general equivalent
positions listed in IT A (2005) for the space group in question,

times the multiplicity of the Bravais lattice, ðPs; tsÞ is the sth
space-group operator and r is an atomic position vector.

The cumulative distribution functions, obtained by integrating
equations (2.1.7.5) and (2.1.7.6), are given by

NcðjEjÞ ¼ erf
jEj
ffiffiffi
2
p

� �

�
2
ffiffiffi
�
p exp �

jEj2

2

� �

�
X1

k¼2

A2k

ð2kÞ!
He2k�1ðjEjÞ

" #

ð2:1:7:13Þ

and

NaðjEjÞ ¼ 1� expð�jEj2Þ þ expð�jEj2Þ

�
X1

k¼2

ð�1ÞkB2k

k!
½Lk�1ðjEj

2
Þ � LkðjEj

2
Þ�

( )

ð2:1:7:14Þ

for centrosymmetric and noncentrosymmetric space groups,
respectively, where the coefficients are defined in equations
(2.1.7.7)–(2.1.7.12). Note that the first term on the right-hand side
of equation (2.1.7.13) and the first two terms on the right-hand
side of equation (2.1.7.14) are just the cumulative distributions
derived from the ideal centric and acentric p.d.f.’s in Section
2.1.5.6.

The moments hjTj2k
i were compiled for all the space groups by

Wilson (1978b) for k ¼ 1 and 2, and by Shmueli & Kaldor (1981,
1983) for k ¼ 1, 2, 3 and 4. These results are presented in Table
2.1.7.1. Closed expressions for the normalized moments �2p were
obtained by Shmueli (1982) for the triclinic, monoclinic and
orthorhombic space groups except Fdd2 and Fddd (see Table
2.1.7.2). The composition-dependent terms, Q2k, are most
conveniently computed as weighted averages over the ranges of
ðsin 	Þ=
 which were used in the construction of the Wilson plot
for the computation of the jEj values.

2.1.7.4. Fourier versus Hermite approximations

As noted in Section 2.1.8.7 below, the Fourier representation of
the probability distribution of jFj is usually much better than
the particular orthogonal-function representation discussed in
Section 2.1.7.3. Many, perhaps most, non-ideal centric distribu-
tions look like slight distortions of the ideal (Gaussian) distri-
bution and have no resemblance to a cosine function. The
empirical observation thus seems paradoxical. The probable
explanation has been pointed out by Wilson (1986b). A truncated
Fourier series is a best approximation, in the least-squares sense,
to the function represented. The particular orthogonal-function
approach used in equation (2.1.7.5), on the other hand, is not a
least-squares approximation to pcðjEjÞ, but is a least-squares
approximation to

pcðjEjÞ expðjEj
2=4Þ: ð2:1:7:15Þ

The usual expansions (often known as Gram–Charlier or Edge-
worth) thus give great weight to fitting the distribution of the
(compararively few) strong reflections, at the expense of a poor
fit for the (much more numerous) weak-to-medium ones.
Presumably, a similar situation exists for the representation of
acentric distributions, but this has not been investigated in detail.
Since the centric distributions pcðjEjÞ often look nearly Gaussian,
one is led to ask if there is an expansion in orthogonal functions
that (i) has the leading term pcðjEjÞ and (ii) is a least-squares (as
well as an orthogonal-function)2 fit to pcðjEjÞ. One does exist,
based on the orthogonal functions
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equation (2.1.7.2) should be unity.
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Table 2.1.7.1. Some even absolute moments of the trigonometric structure factor

The symbols p, q, r and s denote the second, fourth, sixth and eighth absolute moments of the trigonometric structure factor T [equation (2.1.7.12)], respectively, and the
columns of the table contain (for some conciseness) p; q; r=p and s=p2. The numbers in parentheses, appearing beside some space-group entries, refer to hkl subsets which
are defined in the note at the end of the table. These subset references are identical with those given by Shmueli & Kaldor (1981, 1983). The symbols q, r and s are also
equivalent to �4P2, �6P3 and �8P4, respectively, where �2n are the normalized absolute moments given by equation (2.1.7.11).

Space groups(s) p q r=p s=p2

Point group: 1

P1 1 1 1 1

Point group: �11

P�11 2 6 10 1712

Point groups: 2, m

All P 2 6 10 1712

All C 4 48 160 560

Point group: 2=m

All P 4 36 100 30614

All C 8 288 1600 9800

Point group: 222

All P 4 28 64 16934

All C and I 8 224 1024 5432

F222 16 1792 16384 173824

Point group: mm2

All P 4 36 100 30614

All A, C and I 8 288 1600 9800

Fmm2 16 2304 25600 313600

Fdd2 (1) 16 2304 25600 313600

Fdd2 (2) 16 1280 7168 43264

Point group: mmm

All P 8 216 1000 535938

All C and I 16 1728 16000 171500

Fmmm 32 13824 256000 5488000

Fddd (1) 32 13824 256000 5488000

Fddd (2) 32 7680 71680 757120

Point group: 4

P4;P42 4 36 100 30614

P41† (3) 4 36 100 30614

P41† (4) 4 20 28 4214

I4 8 288 1600 9800

I41 (5) 8 288 1600 9800

I41 (6) 8 160 448 1352

Point group: �44

P�44 4 28 64 16934

I �44 8 224 1024 5432

Point group: 4=m

All P 8 216 1000 535938

I4=m 16 1728 16000 171500

I41=a (7) 16 1728 16000 171500

I41=a (8) 16 960 4480 23660

Point group: 422

P422, P4212, P4222, P42212 8 136 424 168218

P4122,† P41212† (3) 8 136 424 168218

P4122,† P41212† (4) 8 104 208 47018

I422 16 1088 6784 53828

I4122 (7) 16 1088 6784 53828

I4122 (8) 16 832 3328 15044

Point group: 4mm

All P 8 168 640 297058

I4mm, I4cm 16 1344 10240 95060

I41md; I41cd (7) 16 1344 10240 95060

I41md; I41cd (8) 16 832 3328 15188

Point groups: �442m; �44m2

All P 8 136 424 168218

I �44m2; I �442m; I �44c2 16 1088 6784 53828

Space groups(s) p q r=p s=p2

I �442d (5) 16 1088 6784 53828

I �442d (6) 16 832 3328 15044

Point group: 4/mmm

All P 16 1008 6400 519851516

I4=mmm, I4=mcm 32 8064 102400 1663550

I41=amd; I41=acd (5) 32 8064 102400 1663550

I41=amd; I41=acd (6) 32 4992 33280 265790

Point group: 3

All P and R 3 15 31 71

Point group: �33

All P and R 6 90 310 124212

Point group: 32

All P and R 6 66 166 50812

Point group: 3m

P3m1, P31m, R3m 6 66 178 60412

P3c1, P31c (3), R3c (1) 6 66 178 60412

P3c1, P31c (4), R3c (2) 6 66 154 41212

Point group: �33m

P�331m;P�33m1;R�33m 12 396 1780 1057834

P�331c;P�33c1 (3), R�33c (1) 12 396 1780 1057834

P�331c;P�33c1 (4), R�33c (2) 12 396 1540 721834

Point group: 6

P6 6 90 340 152212

P61† (9) 6 90 340 152212

P61† (10) 6 54 91 16112

P61† (11) 6 54 97 19312

P61† (12) 6 90 280 96212

P62† (13) 6 90 340 152212

P62† (14) 6 54 97 19312

P63 (3) 6 90 340 152212

P63 (4) 6 90 280 96212

Point group: �66

P�66 6 90 310 124212

Point group: 6=m

P6=m 12 540 3400 2664334

P63=m (3) 12 540 3400 2664334

P63=m (4) 12 540 2800 1684334

Point group: 622

P622 12 324 1150 550614

P6122† (9) 12 324 1150 550614

P6122† (10) 12 252 577 153734

P6122† (11) 12 252 583 160134

P6122† (12) 12 324 1090 474614

P6222† (13) 12 324 1150 550614

P6222† (14) 12 252 583 160134

P6322 (3) 12 324 1150 550614

P6322 (4) 12 324 1090 474614

Point group: 6mm

P6mm 12 396 1930 1281834

P6cc (3) 12 396 1930 1281834

P6cc (4) 12 396 1450 609834

P63cm;P63mc (3) 12 396 1930 1281834

P63cm;P63mc (4) 12 396 1630 833834

Point groups: �66m2; �662m

P�66m2;P�662m 12 396 1780 1057834

P�66c2;P�662c (3) 12 396 1780 1057834
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fk ¼ nðxÞHekð2
1=2xÞ; ð2:1:7:16Þ

where nðxÞ is the Gaussian distribution (Myller-Lebedeff, 1907).
Unfortunately, no reasonably simple relationship between the
coefficients dk and readily evaluated properties of pcðjEjÞ has
been found, and the Myller-Lebedeff expansion has not, as yet,
been applied in crystallography. Although Stuart & Ord (1994,
p. 112) dismiss it in a three-line footnote, it does have important
applications in astronomy (van der Marel & Franx, 1993;
Gerhard, 1993).

2.1.8. Non-ideal distributions: the Fourier method

The starting point of the method described in the previous
section is the central-limit theorem approximation, and the
method consists of finding correction factors which result in
better approximations to the actual p.d.f. Conceptually, this is
equivalent to improving the approximation of the characteristic
function [cf. equation (2.1.4.10)] over that which led to the
central-limit theorem result.

The method to be described in this section does not depend on
any initial approximation and will be shown to utilize the
dependence of the exact value of the characteristic function on
the space-group symmetry, atomic composition and other factors.
This approach has its origin in a simple but ingenious observation
by Barakat (1974), who noted that if a random variable has lower
and upper bounds then the corresponding p.d.f. can be nonzero
only within these bounds and can therefore be expanded in an
ordinary Fourier series and set to zero (identically) outside the
bounded interval. Barakat’s (1974) work dealt with intensity
statistics of laser speckle, where sinusoidal waves are involved, as
in the present problem. This method was applied by Weiss &
Kiefer (1983) to testing the accuracy of a steepest-descents
approximation to the exact solution of the problem of random
walk, and its first application to crystallographic intensity
statistics soon followed (Shmueli et al., 1984). Crystallographic
(e.g. Shmueli & Weiss, 1987; Rabinovich et al., 1991a,b) and
noncrystallographic (Shmueli et al., 1985; Shmueli & Weiss,
1985a; Shmueli, Weiss & Wilson, 1989; Shmueli et al., 1990)
symmetry was found to be tractable by this approach, as well as
joint conditional p.d.f.’s of several structure factors (Shmueli &
Weiss, 1985b, 1986; Shmueli, Rabinovich & Weiss, 1989). The
Fourier method is illustrated below by deriving the exact coun-
terparts of equations (2.1.7.5) and (2.1.7.6) and specifying them
for some simple symmetries. We shall then indicate a method of
treating higher symmetries and present results which will suffice
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Table 2.1.7.2. Closed expressions for �2k [equation (2.1.7.11)] for space groups
of low symmetry

The normalized moments �2k are expressed in terms of Mk, where

Mk ¼
ð2kÞ!

2kðk!Þ2
¼
ð2k� 1Þ!!

k!
;

and l0, which takes on the values 1, 2 or 4 according as the Bravais lattice is of type
P, one of the types A, B, C or I, or type F, respectively. The expressions for �2k are
identical for all the space groups based on a given point group, except Fdd2 and
Fddd. The expressions are valid for general reflections and under the restrictions
given in the text.

Point group(s) Expression for �2k

1 1

�11; 2;m l0k�1Mk

2=m;mm2 l0k�1M2
k

mmm l0k�1M3
k
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l0k�1

2kðk!Þ2

Xk

p¼0

ðMpMk�pÞ
3
½p!ðk� pÞ!�2

Table 2.1.7.1 (cont.)

Space groups(s) p q r=p s=p2

P�66c2;P�662c (4) 12 396 1540 721834

Point group: 6/mmm

P6/mmm 24 2376 19300 22432818

P6/mcc (3) 24 2376 19300 22432818

P6/mcc (4) 24 2376 14500 10672818

P6/mcm, P6/mmc (3) 24 2376 19300 22432818

P6=mcm, P6=mmc (4) 24 2376 16300 14592818

Point group: 23

P23, P213 12 276 760 269514

I23, I213 24 2208 12160 86248

F23 48 17664 194560 2759936

Point group: m�33

Pm�33;Pn�33;Pa3 24 1800 9400 6770318

Im�33; Ia�33 48 14400 150400 2166500

Fm�33 96 115200 2406400 69328000

Fd�33 (1) 96 115200 2406400 69328000

Fd�33 (2) 96 96768 1484800 28183680

Point group: 432

P432;P4232 24 1272 4648 2521678

P4132† (15) 24 1272 4648 2521678

P4132† (16) 24 1176 3568 1391678

P4132† (17) 24 1080 2776 866478

P4132† (18) 24 984 2272 658078

I432 48 10176 74368 806940

I4132 (15) 48 10176 74368 806940

I4132 (17) 48 8640 44416 277276

F432 96 81408 1189888 25822080

F4132 (15) 96 81408 1189888 25822080

F4132 (18) 96 62976 581632 6738816

Point group: �443m

P�443m 24 1272 5128 3289678

P�443n (1) 24 1272 5128 3289678

P�443n (2) 24 1272 4168 1753678

I �443m 48 10176 82048 1052700

I �443d (15); (20) 48 10176 82048 1052700

I �443d (15); (21) 48 10176 66688 561180

I �443d (17) 48 8640 44416 277276

F �443m 96 81408 1312768 33686400

F �443c (15) 96 81408 1312768 33686400

F �443c (18) 96 81408 1067008 17957760

Point group: m�33m

Pm�33m;Pn�33m 48 8784 72160 9727171316

Pn�33n;Pm�33n (1) 48 8784 72160 9727171316

Pn�33n;Pm�33n (2) 48 8784 56800 4888771316

Im�33m 96 70272 1154560 31126970

Ia�33d (15); (20) 96 70272 1154560 31126970

Ia�33d (15); (21) 96 51840 432640 4497850

Ia�33d (17) 96 70272 908800 15644090

Fm�33m 192 562176 18472960 996063040

Fm�33c (1) 192 562176 18472960 996063040

Fm�33c (2) 192 562176 14540800 500610880

Fd�33m (1) 192 562176 18472960 996063040

Fd�33m (2) 192 414720 7782400 205432640

Fd�33c (1) 192 562176 18472960 996063040

Fd�33c (2) 192 414720 6799360 136619840

Note. hkl subsets: (1) hþ kþ l ¼ 2n; (2) hþ kþ l ¼ 2nþ 1; (3) l ¼ 2n; (4) l ¼ 2nþ 1; (5)
2hþ l ¼ 2n; (6) 2hþ l ¼ 2nþ 1; (7) 2kþ l ¼ 2n; (8) 2kþ l ¼ 2nþ 1; (9) l ¼ 6n; (10)
l ¼ 6nþ 1; 6nþ 5; (11) l ¼ 6nþ 2; 6nþ 4; (12) l ¼ 6nþ 3; (13) l ¼ 3n; (14) l ¼ 3nþ 1,
3nþ 2; (15) hkl all even; (16) only one index odd; (17) only one index even; (18) hkl all odd;
(19) two indices odd; (20) hþ kþ l ¼ 4n; (21) hþ kþ l ¼ 4nþ 2. † And the enantio-
morphous space group.
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