International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 2.5, pp. 335-343   | 1 | 2 |

## Table 2.5.3.12

M. Tanakaf
 Table 2.5.3.12| top | pdf | Dynamical extinction lines appearing in HOLZ reflections for crystal space groups that have mirror and glide planes
 Point groups m, 2/m (second setting, unique axis b)
Space groupIncident-beam direction
[u0w]
6 Pm
7 Pc h0lo Ah
c
8 Cm
9 Cc he0lo Ah
c
10 P2/m
11 P21/m
12 C2/m
13 P2/c h0lo Ah
c
14 P21/c h0lo Ah
c
15 C2/c he0lo Ah
c
 Point group mm2
Space groupIncident-beam direction
[100][010][001][0vw][u0w]
25 Pmm2
26 Pmc21 h0lo A     h0lo A     h0lo Ah
c     c     c
27 Pcc2 h0lo A 0klo A 0klo A 0klo Ah h0lo Ah
c2 c1 c1 c1 c2
h0lo
c2
28 Pma2 ho0l A     ho0l A     ho0l Ah
a     a     a
29 Pca21 ho0l A 0klo A 0klo A 0klo Ah ho0l Ah
a c c c a
ho0l
a
30 Pnc2 h0lo
c
A 0kl: k + l = 2n + 1
n
A 0kl: k + l = 2n + 1
n
A 0kl: k + l = 2n + 1
n
Ah h0lo
c
Ah
h0lo
c
31 Pmn21 h0l: h + l = 2n + 1 A     h0l: h + l = 2n + 1 A     h0l: h + l = 2n + 1 Ah
n     n     n
32 Pba2 ho0l A 0kol A 0kol A 0kol Ah ho0l Ah
a b b b a
ho0l
a
33 Pna21 ho0l
a
A 0kl: k + l = 2n + 1
n
A 0kl: k + l = 2n + 1
n
A 0kl: k + l = 2n + 1
n
Ah ho0l
a
Ah
ho0l
a
34 Pnn2 h0l: h + l = 2n + 1 A 0kl: k + l = 2n + 1 A 0kl: k + l = 2n + 1 A 0kl: k + l = 2n + 1 Ah h0l: h + l = 2n + 1 Ah
n2 n1 n1 n1 n2
h0l: h + l = 2n + 1
n2
35
36 he0lo A     he0lo A     he0lo Ah
c     c     c
37 he0lo A 0kelo A 0kelo A 0kelo Ah he0lo Ah
c2 c1 c1 c1 c2
he0lo
c2
38
39     0kolo A 0kolo A 0kolo Ah
b b b
40 ho0le A     ho0le A     ho0le Ah
a     a     a
41 ho0le A 0kolo A 0kolo A 0kolo Ah ho0le Ah
a b b b a
ho0le
a
42 Fmm2
43 he0le: he + le = 4n + 2 A 0kele: ke + le = 4n + 2 A 0kele: ke + le = 4n + 2 A 0kele: ke + le = 4n + 2 Ah he0le: he + le = 4n + 2 Ah
d2 d1 d1 d1 d2
he0le: he + le = 4n + 2
d2
44
45 ho0lo A 0kolo A 0kolo A 0kolo Ah ho0lo Ah
a b b b a
ho0lo
a
46 ho0lo A     ho0lo A     ho0lo Ah
a     a     a
 Point group mmm
Space groupIncident-beam direction
[100][010][001][uv0][0vw][u0w]
47 P2/m2/m2/m
48 P2/n2/n2/n h0l: h + l = 2n + 1 A 0kl: k + l = 2n + 1 A 0kl: k + l = 2n + 1 A hk0: h + k = 2n + 1 Ah 0kl: k + l = 2n + 1 Ah h0l: h + l = 2n + 1 Ah
n2 n1 n1 n3 n1 n2
hk0: h + k = 2n + 1 hk0: h + k = 2n + 1 h0l: h + l = 2n + 1
n3 n3 n2
49 P2/c2/c2/m h0lo A 0klo A 0klo A     0klo Ah h0lo Ah
c2 c1 c1     c1 c2
h0lo
c2
50 P2/b2/a2/n ho0l
a
hk0: h + k = 2n + 1
n
A 0kol
b
hk0: h + k = 2n + 1
n
A 0kol
b
ho0l
a
A hk0: h + k = 2n + 1
n
Ah 0kol
b
Ah ho0l
a
Ah
51 P21/m2/m2/a hok0 A hok0 A     hok0 Ah
a a     a
52 P2/n21/n2/a h0l: h + l = 2n + 1
n2
A 0kl: k + l = 2n + 1
n1
A 0kl: k + l = 2n + 1
n1
A hok0
a
Ah 0kl: k + l = 2n + 1
n1
Ah h0l: h + l = 2n + 1
n2
Ah
hok0
a
hok0
a
h0l: h + l = 2n + 1
n2

53 P2/m2/n21/a h0l: h + l = 2n + 1
n
A hok0
a
A h0l: h + l = 2n + 1
n
A hok0
a
Ah     h0l: h + l = 2n + 1
n
Ah
hok0
a
54 P21/c2/c2/a h0lo A 0klo A 0klo A hok0 Ah 0klo Ah h0lo Ah
c2 c1 c1 a c1 c2
hok0 hok0 h0lo
a a c2
55 P21/b21/a2/m ho0l A 0kol A 0kol A     0kol Ah ho0l Ah
a b b     b a
ho0l
a
56 P21/c21/c2/n h0lo
c2
hk0: h + k = 2n + 1
n
A 0klo
c1
hk0: h + k = 2n + 1
n
A 0klo
c1
h0lo
c2
A hk0: h + k = 2n + 1
n
Ah 0klo
c1
Ah h0lo
c2
Ah
57 P2/b21/c21/m h0lo A 0kol A 0kol A     0kol Ah h0lo Ah
c b b     b c
h0lo
c
58 P21/n21/n2/m h0l: h + l = 2n + 1 A 0kl: k + l = 2n + 1 A 0kl: k + l = 2n + 1 A     0kl: k + l = 2n + 1 Ah h0l: h + l = 2n + 1 Ah
n2 n1 n1     n1 n2
h0l: h + l = 2n + 1
n2
59 P21/m21/m2/n hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 A     hk0: h + k = 2n + 1 Ah
n n     n
60 P21/b2/c21/n h0lo
c
hk0: h + k = 2n + 1
n
A 0kol
b
hk0: h + k = 2n + 1
n
A 0kol
b
h0lo
c
A hk0: h + k = 2n + 1
n
Ah 0kol
b
Ah h0lo
c
Ah
61 P21/b21/c21/a h0lo A 0kol A 0kol A hok0 Ah 0kol Ah h0lo Ah
c b b a b c
hok0 hok0 h0lo
a a c
62 P21/n21/m21/a hok0
a
A 0kl: k + l = 2n + 1
n
A 0kl: k + l = 2n + 1
n
A hok0
a
Ah 0kl: k + l = 2n + 1
n
Ah
hok0
a
63 C2/m2/c21/m he0lo A     he0lo A         he0lo Ah
c     c         c
64 C2/m2/c21/a he0lo A hoko0 A he0lo A hoko0 Ah     he0lo Ah
c a c a     c
hoko0
a
65 C2/m2/m2/m
66 C2/c2/c2/m he0lo A 0kelo A 0kelo A     0kelo Ah he0lo Ah
c2 c1 c1     c1 c2
he0lo
c2
67 C2/m2/m2/a hoko0 A hoko0 A     hoko0 Ah
a a     a
68 C2/c2/c2/a he0lo A 0kelo A 0kelo A hoko0 Ah 0kelo Ah he0lo Ah
c2 c1 c1 a c1 c2
hoko0 hoko0 he0lo
a a c2
69 F2/m2/m2/m
70 F2/d2/d2/d he0le: he + le = 4n + 2 A heke0: he + ke = 4n + 2 A 0kele: ke + le = 4n + 2 A heke0: he + ke = 4n + 2 Ah 0kele: ke + le = 4n + 2 Ah he0le: he + le = 4n + 2 Ah
d2 d3 d1 d3 d1 d2
heke0: he + ke =4n + 2 0kele: ke + le = 4n + 2 he0le: he + le = 4n + 2
d3 d1 d2
71 I2/m2/m2/m
72 I2/b2/a2/m ho0lo A 0kolo A 0kolo A     0kolo Ah ho0lo Ah
a b b     b a
ho0lo
a
73 I21/b21/c21/a ho0lo A hoko0 A 0kolo A hoko0 Ah 0kolo Ah ho0lo Ah
c a b a b c
hoko0 0kolo ho0lo
a b c
74 I21/m21/m21/a hoko0 A hoko0 A     hoko0 Ah
a a     a
 Point group 4/m
Space groupIncident-beam direction
[100], [110][uv0]
83 P4/m
84 P42/m
85 P4/n hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 Ah
n n
86 P42/n hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 Ah
n n
87 I4/m
88 I41/a hoko0 A hoko0 Ah
a   a
 Point group 4mm. The symbol a in the column [u0w] is equivalent to the symbol b in the space groups of the first column.
Space groupIncident-beam direction
[100][001][110][u0w][uuw]
99 P4mm
100 P4bm ho0l A 0kol A     ho0l Ah
a2 b1     a
ho0l
a2
101 P42cm h0lo A 0klo A     h0lo Ah
c2 c1     c
h0lo
c2
102 P42nm h0l: h + l = 2n + 1 A 0kl: k + l = 2n + 1 A     h0l: h + l = 2n + 1 Ah
n2 n1     n
h0l: h + l = 2n + 1
n2
103 P4cc h0lo A 0klo A hhlo A h0lo Ah hhlo Ah
c12 c11 c2 c1 c2
h0lo
c12

c2
104 P4nc h0l: h + l = 2n + 1
n2
A 0kl: k + l = 2n + 1
n1
A hhlo
c
A h0l: h + l = 2n + 1
n
Ah hhlo
c
Ah
h0l: h + l = 2n + 1
n2

c
105 P42mc     A hhlo A     hhlo Ah
c c     c
106 P42bc ho0l A 0kol A hhlo A ho0l Ah hhlo Ah
a2 b1 c a c
ho0l
a2

c
107 I4mm
108 I4cm ho0lo A 0kolo A     ho0lo Ah
c2 c1     c
ho0lo
c2
109 I41md     hhle, : 2h + le = 4n + 2 A hhle: 2h + le = 4n + 2 A     hhle: 2h + le = 4n + 2 Ah
d d       d
110 I41cd ho0lo
c2
A 0kolo
c1
ho0lo
c2
hhle, : 2h + le = 4n + 2
d
A hhle: 2h + le = 4n + 2
d
A ho0lo
c
Ah hhle: 2h + le = 4n + 2
d
Ah
 Point group . The symbol a in the column [u0w] is equivalent to the symbol b in the space groups of the first column.
Space groupIncident-beam direction
[100][001][110][u0w][uuw]
111
112     hhlo, A hhlo A     hhlo Ah
c c     c
113
114     hhlo, A hhlo A     hhlo Ah
c c     c
115
116 h0lo A 0klo A     h0lo Ah
c2 c1     c
h0lo
c2
117 ho0l A 0kol A     ho0l Ah
a2 b1     a
ho0l
a2
118 h0l: h + l = 2n + 1 A 0kl: k + l = 2n + 1 A     h0l: h + l = 2n + 1 Ah
n2 n1     n
h0l: h + l = 2n + 1
n2
119
120 ho0lo A 0kolo A     ho0lo Ah
c2 c1     c
ho0lo
c2
121
122     hhle, : 2h + le = 4n + 2 A hhle: 2h + le = 4n + 2 A     hhle: 2h + le = 4n + 2 Ah
d d     d
 Point group 4/mmm. The symbol a in the column [u0w] is equivalent to the symbol b in the space groups of the first column.
Space groupIncident-beam direction
[100][001][110][u0w][uuw][uv0]
123 P4/mmm
P4/m2/m2/m
124 P4/mcc h0lo A 0klo A hhlo A h0lo Ah hhlo Ah
P4/m2/c2/c c12 c11 c2 c1 c2
h0lo
c12

c2
125 P4/nbm
P4/n2/b2/m
hk0: h + k = 2n + 1
n
ho0l
a2
A 0kol
b1
ho0l
a2
A hk0: h + k = 2n + 1
n
A ho0l
a
Ah     hk0: h + k = 2n + 1
n
Ah
126 P4/nnc
P4/n2/n2/c
hk0: h + k = 2n + 1
n1
A 0kl: k + l = 2n + 1
n21
A hk0: h + k = 2n + 1
n1
A h0l: h + l = 2n + 1
n2
Ah hhlo
c
Ah hk0: h + k = 2n + 1
n1
Ah
h0l: h + l = 2n + 1
n22
h0l: h + l = 2n + 1
n22
hhlo
c

c
127 P4/mbm ho0l A 0kol A     ho0l Ah
P4/m21/b2/m a2 b1     a
ho0l
a2
128 P4/mnc
P4/m21/n2/c
h0l: h + l = 2n + 1
n2
A 0kl: k + l = 2n + 1
n1
A hhlo
c
A h0l: h + l = 2n + 1
n
Ah hhlo
c
Ah
h0l: h + l = 2n + 1
n2

c
129 P4/nmm
P4/n21/m2/m
hk0: h + k = 2n + 1
n
A     hk0: h + k = 2n + 1
n
A         hk0: h + k = 2n + 1
n
Ah
130 P4/ncc
P4/n21/c2/c
hk0: h + k = 2n + 1
n
h0lo
c12
A 0klo
c11
h0lo
c12

c2
A hk0: h + k = 2n + 1
n
hhlo
c2
A h0lo
c1
Ah hhlo
c2
Ah hk0: h + k = 2n + 1
n
Ah
131 P42/mmc     A hhlo A     hhlo Ah
P42/m2/m2/c     c c     c
132 P42/mcm h0lo A 0klo A     h0lo Ah
P42/m2/c2/m c2 c1     c
h0lo
c2
133 P42/nbc
P42/n2/b2/c
hk0: h + k = 2n + 1
n
ho0l
a2
A 0kol
b1
ho0l
a2

c
A hk0: h + k = 2n + 1
n
hhlo
c
A ho0l
a
Ah hhlo
c
Ah hk0: h + k = 2n + 1
n
Ah
134 P42/nnm
P42/n2/n2/m
hk0: h + k = 2n + 1
n1
A 0kl: k + l = 2n + 1
n21
A hk0: h + k = 2n + 1
n1
A h0l: h + l = 2n + 1
n2
Ah     hk0: h + k = 2n + 1
n1
Ah
h0l: h + l = 2n + 1 h0l: h + l = 2n + 1
n22 n22
135 P42/mbc ho0l A 0kol A hhlo A ho0l Ah hhlo Ah
P42/m21/b2/c a2 b1 c a c
ho0l
a2

c
136 P42/mnm
P42/m21/n2/m
h0l: h + l = 2n + 1
n2
A 0kl: k + l = 2n + 1
n1
A     h0l: h + l = 2n + 1
n
Ah
h0l: h + l = 2n + 1
n2
137 P42/nmc
P42/n21/m2/c
hk0: h + k = 2n + 1
n
A
c
A hhlo
c
hk0: h + k = 2n + 1
n
A     hhlo
c
Ah hk0: h + k = 2n + 1
n
Ah
138 P42/ncm
P42/n21/c2/m
hk0: h + k = 2n + 1
n
A 0klo
c1
h0lo
c2
A hk0: h + k = 2n + 1
n
A h0lo
c
Ah     hk0: h + k = 2n + 1
n
Ah
h0lo
c2
139 I4/mmm
I4/m2/m2/m
140 I4/mcm ho0lo A 0kolo A     ho0lo Ah
I4/m2/c2/m c2 c1     c
ho0lo
c2
141 I41/amd
I41/a2/m2/d
hoko0
a
A : 2h + le = 4n + 2
d
A hoko0
a
hhle: 2h + le = 4n + 2
d
A     hhle: 2h + le = 4n + 2
d
Ah hoko0
a
Ah
142 I41/acd
I41/a2/c2/d
hoko0
a
ho0lo
c2
A 0kolo
c1
ho0lo
c2
: 2h + le = 4n + 2
d
A hoko0
a
hhle: 2h + le = 4n + 2
d
A ho0lo
c
Ah hhle: 2h + le = 4n + 2
d
Ah hoko0
a
Ah
 Point groups
Space groupIncident-beam direction
[0001]
156 P3m1
157 P31m
158 P3c1 A     A     Ah
c     c     c
159 P31c A A     Ah
c c     c
160 R3m
161 R3c : h + lo = 3n Ah     : h + lo = 3n Ah     : h + lo = 3n Ah
c     c     c
162
163 A A     Ah
c c     c
164
165 A     A     Ah
c     c     c
166
167 : h + lo = 3n Ah     : h + lo = 3n Ah     : h + lo = 3n Ah
c     c     c
 Point groups
Space groupIncident-beam direction
[0001]
183 P6mm
184 P6cc A A A Ah Ah
c1 c2 c1 c2 c1

c2
185 P63cm A     A     Ah
c     c     c
186 P63mc A A     Ah
c c     c
187
188 A     A     Ah
c     c     c
189
190 A A     Ah
c c     c
191 P6/mmm
192 P6/mcc A A A Ah Ah
c1 c2 c1 c2 c1

c2
193 P63/mcm A     A     Ah
c     c     c
194 P63/mmc A A     Ah
c c     c
 Point group m3
Space groupIncident-beam direction
[100][110][uv0]
200 Pm3

201 Pn3 h0l: h + l = 2n + 1 A hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 Ah
n2 n3 n
hk0: h + k = 2n + 1
n3
202 Fm3

203 Fd3 he0le: he + le = 4n + 2 A heke0: he + ke = 4n + 2 A heke0: he + ke = 4n + 2 Ah
d2 d3 d
heke0: he + ke = 4n + 2
d3
204 Im3

205 Pa3 h0lo A hok0 A* hok0 Ah
c2 a3 a
hok0
a3
206 Ia3 ho0lo A hoko0 A hoko0 Ah
c2 a3 a
hoko0
a3
 Point group . The symbol a in the column [100] is equivalent to the symbol c in the space groups of the first column.
Space groupIncident-beam direction
[100][110][uuw]
215
216
217
218 A hhlo A hhlo Ah
n n n
219 A hoholo A hoholo Ah
a c c
220 : 2k + he = 4n + 2 A hhle: 2h + le = 4n + 2 A hhle: 2h + le = 4n + 2 Ah
d d d
 Point group m3m. The symbol a in the column [100] is equivalent to the symbol c in the space groups of the first column.
Space groupIncident-beam direction
[100][110][uv0] [uuw]
221 Pm3m

222 Pn3n h0l: h + l = 2n + 1 A hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 Ah hhlo Ah
n12 n13 n1 n2
hk0: h + k = 2n + 1 hhlo
n13 n2

n2
223 Pm3n A hhlo A     hhlo Ah
n n     n
224 Pn3m h0l: h + l = 2n + 1 A hk0: h + k = 2n + 1 A hk0: h + k = 2n + 1 Ah
n2 n3 n
hk0: h + k = 2n + 1
n3
225 Fm3m

226 Fm3c A hoholo A     hoholo Ah
a c     c
227 Fd3m he0le: he + le = 4n + 2 A heke0: he + ke = 4n + 2 A heke0: he + ke = 4n + 2 Ah
d2 d3 d
heke0: he + ke = 4n + 2
d3
228 Fd3c he0le: he + le = 4n + 2 A hoholo A heke0: he + ke = 4n + 2 Ah hoholo Ah
d2 c d c
heke0: he + ke = 4n + 2 heke0: he + ke = 4n + 2
d3 d3

a
229 Im3m

230 Ia3d hoko0 A hhle: 2h + le = 4n + 2 A hoko0 Ah hhle: 2h + le = 4n + 2 Ah
a3 d a d
ho0lo hoko0
c2 a3
: 2k + he = 4n + 2
d