Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 3.5, pp. 458-481

Chapter 3.5. Extensions of the Ewald method for Coulomb interactions in crystals

T. A. Dardena*

aLaboratory of Structural Biology, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
Correspondence e-mail:


Aguado, A. & Madden, P. A. (2003). Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J. Chem. Phys. 119, 7471–7483.
Allen, M. P. & Tildesley, D. J. (1987). Computer Simulation of Liquids. Oxford: Clarendon Press.
Arfken, G. B. & Weber, H. J. (2000). Mathematical Methods for Physicists, 5th ed. San Diego: Academic Press.
Beck, T. L. (2000). Real-space mesh techniques in density functional theory. Rev. Mod. Phys. 72, 1041–1080.
Böttcher, C. J. F. (1973). Theory of Electric Polarization. Amsterdam: Elsevier Science Publishers BV.
Broderson, S., Wilke, S., Leusen, F. J. L. & Engel, G. (2003). A study of different approaches to the electrostatic interaction in force field methods for organic crystals. Phys. Chem. Chem. Phys. 5, 4923–4931.
Brown, D. & Neyertz, S. (1995). A general pressure tensor calculation for molecular dynamics simulations. Mol. Phys. 84, 577–595.
Challacombe, M., White, C. & Head-Gordon, M. (1997). Periodic boundary conditions and the fast multipole method. J. Chem. Phys. 107, 10131–10140.
Chemburkar, S. R., Bauer, J., Deming, K., Spiwek, H., Patel, K., Morris, J., Henry, R., Spanton, S., Dziki, W., Porter, W., Quick, J., Bauer, P., Donabauer, J., Narayanan, B. A., Soldani, M., Riley, D. & McFarland, K. (2000). Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev. 4, 413–417.
Cisneros, G. A., Piquemal, J. P. & Darden, T. A. (2005). Intermolecular electrostatics using density fitting. J. Chem. Phys. 123, 044109.
Cisneros, G. A., Piquemal, J. P. & Darden, T. A. (2006). Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods. J. Chem. Phys. 125, 184101.
Coppens, P. (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press.
Coppens, P. & Volkov, A. (2004). The interplay between experiment and theory in charge-density analysis. Acta Cryst. A60, 357–364.
Darden, T., Pearlman, D. A. & Pedersen, L. G. (1999). Ionic charging free energies: Spherical versus periodic boundary conditions. J. Chem. Phys. 109, 10921–10935.
Darden, T. A., Toukmaji, A. & Pedersen, L. (1997). Long-range electrostatic effects in biomolecular simulations. J. Chim. Phys. 94, 1346–1364.
Darden, T. A., York, D. M. & Pedersen, L. G. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.
Day, G. M., Chisholm, J., Shan, N., Motherwell, W. D. S. & Jones, W. (2004). An assessment of lattice energy minimization for the prediction of molecular organic crystal structures. Cryst. Growth Des. 4, 1327–1340.
Day, G. M., Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferrarro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. & Verwer, P. (2005). A third blind test of crystal structure prediction. Acta Cryst. B61, 511–527.
Day, G. M., Motherwell, W. D. S. & Jones, W. (2005). Beyond the isotropic atom model in crystal structure prediction of rigid molecules: Atomic multipoles versus point charges. Cryst. Growth Des. 5, 1023–1033.
Deem, M. W., Newsam, J. M. & Sinha, S. K. (1990). The h = 0 term in Coulomb sums by the Ewald transformation. J. Phys. Chem. 94, 8356–8359.
DeLeeuw, S. W., Perram, J. W. & Petersen, H. G. (1990). Hamilton's equations for constrained dynamical systems. J. Stat. Phys. 61, 1203–1222.
Deserno, M. & Holm, C. (1998). How to mesh up Ewald sums I: A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678–7693.
Destro, R., Roversi, P., Barzaghi, M. & Marsh, R. E. (2000). Experimental charge density of α-glycine at 23 K. J. Phys. Chem. A, 104, 1047–1054.
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Crystal: a computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. 220, 571–573.
Dunitz, J. D. (2003). Are crystal structures predictable? Chem. Commun. 5, 545–548.
Dunitz, J. D. & Bernstein, J. (1995). Disappearing polymorphs. Acc. Chem. Res. 28, 193–200.
Dunitz, J. D. & Gavezzotti, A. (2005). Molecular recognition in organic crystals: Directed intermolecular bonds or nonlocalized bonding? Angew. Chem. 44, 1766–1787.
Dunitz, J. D. & Scheraga, H. A. (2004). Exercises in prognistication: Crystal structures and protein folding. Proc. Natl Acad. Sci. USA, 101, 14309–14311.
Eijck, B. P. van & Kroon, J. (1997). Coulomb energy of polar crystals. J. Phys. Chem. B, 101, 1096–1100.
Eijck, B. P. van & Kroon, J. (2000). Comment on `Crystal structure prediction by global optimization as a tool for evaluating potentials: role of the dipole moment correction terms in successful predictions'. J. Phys. Chem. B, 104, 8089.
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.
Eyges, L. (1980). The Classical Electromagnetic Field. New York: Dover Publications Inc.
Frenkel, D. & Smit, B. (2002). Understanding Molecular Simulation. San Diego: Academic Press.
Fusti-Molnar, L. & Pulay, P. (2002). The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis. J. Chem. Phys. 117, 7827–7835.
Gavezzotti, A. (2002a). Structure and intermolecular potentials in molecular crystals. Modelling Simul. Mater. Sci. Eng. 10, R1–R29.
Gavezzotti, A. (2002b). Calculation of intermolecular interaction energies by direct numerical interaction energies I. Electrostatic and polarization energies in molecular crystals. J. Phys. Chem. B, 106, 4145–4154.
Gavezzotti, A. & Fillipini, G. (1994). The geometry of the intermolecular x—H...y (x, y = N, O) hydrogen bond and the calibration of empirical hydrogen bond potentials. J. Phys. Chem. 98, 4831–4837.
Gill, P. M. W. & Adamson, R. D. (1996). A family of attenuated Coulomb operators. Chem. Phys. Lett. 261, 105–110.
Helgaker, T., Jorgensen, P. & Olsen, J. (2000). Molecular Electronic-Structure Theory. Chichester: John Wiley and Sons.
Hockney, R. W. & Eastwood, J. W. (1981). Computer Simulation Using Particles. New York: McGraw-Hill.
Hummer, G. (1996). Electrostatic potential of a homogeneously charged square and cube in two and three dimensions. J. Electrostat. 3, 285–291.
Hummer, G., Pratt, L. R. & Garcia, A. E. (1996). On the free energy of ionic hydration. J. Phys. Chem. 100, 1206–1215.
Kittel, C. (1986). Introduction to Solid State Physics. New York: John Wiley and Sons.
Körner, T. W. (1988). Fourier Analysis. Cambridge University Press.
McMurchie, L. E. & Davidson, E. R. (1978). One-electron and 2-electron integrals over Cartesian Gaussian functions. J. Comput. Phys. 26, 218–231.
Mooji, W. T. M., van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M. & van Eijck, B. P. (1999). Transferable ab initio intermolecular potentials. 1. Derivation from methanol dimer and trimer calculations. J. Phys. Chem. A, 103, 9872–9882.
Nijboer, B. R. A. & Ruijgrok, Th. W. (1988). On the energy per particle in three- and two-dimensional Wigner lattices. Mol. Phys. 53, 361–382.
Nosé, S. & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076.
Nowell, H., Frampton, C. S., Waite, J. & Price, S. L. (2006). Blind crystal structure prediction of a novel second polymorph of 1-hydroxy-7-azabenzotriazole. Acta Cryst. B62, 642–650.
Perram, J. W., Petersen, H. G. & DeLeeuw, S. W. (1988). An algorithm for the simulation of condensed matter that grows as the 3/2 power of the number of particles. Mol. Phys. 65, 875–893.
Pillardy, J., Wawak, R. J., Arnautova, Y. A., Czaplewski, C. & Scheraga, H. A. (2000). Crystal structure prediction by global optimization as a tool for evaluating potentials: Role of the dipole moment correction term in successful predictions. J. Am. Chem. Soc. 122, 907–921.
Piquemal, J. P., Cisneros, G. A. & Darden, T. A. (2006). Towards a force field based on density fitting. J. Chem. Phys. 124, 104101.
Pollock, E. L. & Glosli, J. (1996). Comments on p(3)m, fmm and the Ewald method for large periodic Coulombic systems. Comput. Phys. Comm. 95, 93–110.
Price, S. L. & Price, L. S. (2005). Modelling intermolecular forces for organic crystal structure prediction. Struct. Bond. 115, 81–123.
Redlack, A. & Grindley, J. (1972). The electrostatic potential in a finite ionic crystal. Can. J. Phys. 50, 2815–2825.
Redlack, A. & Grindley, J. (1975). Coulombic potential lattice sums. J. Phys. Chem. Solids, 36, 73–82.
Ren, P. Y. & Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B, 107, 5933–5947.
Sagui, C. & Darden, T. (2001). Multigrid methods for classical molecular dynamics simulations of biomolecules. J. Chem. Phys. 114, 6578–6591.
Sagui, C., Pedersen, L. G. & Darden, T. A. (2004). Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations. J. Chem. Phys. 120, 73–87.
Schoenberg, I. J. (1973). Cardinal Spline Interpolation. Philadelphia: Society for Industrial and Applied Mathematics.
Shan, Y. B., Klepeis, J. L., Eastwood, M. P., Dror, R. O. & Shaw, D. E. (2005). Gaussian split Ewald: A fast Ewald mesh method for molecular simulations. J. Chem. Phys. 122, 054101.
Smith, E. R. (1981). Electrostatic energy in ionic crystals. Proc. R. Soc. London Ser. A, 373, 27–56.
Smith, E. R. (1994). Calculating the pressure in simulations using periodic boundary conditions. J. Stat. Phys. 77, 449–472.
Smith, W. (1982). Point multipoles in the Ewald summation. CCP5 Inf. Q. 4, 13–25.
Smith, W. (1987). Coping with the pressure: How to calculate the virial. CCP5 Inf. Q. 26, 43–50.
Smith, W. (1993). Calculating the pressure. CCP5 Inf. Q. 39, 1–7.
Smith, W. (1998). Point multipoles in the Ewald summation (revisited). CCP5 Inf. Q. 46, 18–30.
Spackman, M. A., Weber, H. P. & Craven, B. M. (1988). Energies of molecular-interactions from Bragg diffraction data. J. Am. Chem. Soc. 110, 775–782.
Stone, A. J. (1996). The Theory of Intermolecular Forces. New York: Oxford University Press.
Trickey, S. B., Alford, J. A. & Boettger, J. C. (2004). Methods and implementation of robust, high-precision Gaussian basis DFT calculations for periodic systems: the GTOFF code. In Theoretical and Computational Chemistry, edited by J. Leszcynski, Vol. 15, ch. 6. Amsterdam: Elsevier.
Volkov, A., Koritsansky, T. & Coppens, P. (2004). Combination of the exact potential and multipole methods (ep/mm) for evaluation of intermolecular interaction energies with pseudoatom implementation of electron densities. Chem. Phys. Lett. 391, 170–175.
Wedemeyer, W. J., Arnautova, Y. A., Pillardy, J., Wawak, R. A., Czaplewsky, C. & Scheraga, H. A. (2000). Reply to `Comment on Crystal structure prediction by global optimization as a tool for evaluating potentials: role of the dipole moment correction terms in successful predictions'. J. Phys. Chem. B, 104, 8090–8092.
Williams, D. E. (2001). Improved intermolecular force field for molecules containing H, C, N and O atoms, with application to nucleoside and peptide crystals. J. Comput. Chem. 22, 1154–1166.
Williams, D. E. & Cox, S. R. (1984). Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interactions. Acta Cryst. B40, 404–417.
York, D. & Yang, W. (1994). The fast Fourier Poisson (FFP) method for calculating Ewald sums. J. Chem. Phys. 101, 3298–3300.