International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 4.4, pp. 551-554   | 1 | 2 |

## Section 4.4.3. Smectic-A and smectic-C phases

P. S. Pershana*

aDivision of Engineering and Applied Science and The Physics Department, Harvard University, Cambridge, MA 02138, USA
Correspondence e-mail: pershan@deas.harvard.edu

### 4.4.3. Smectic-A and smectic-C phases

| top | pdf |

#### 4.4.3.1. Homogeneous smectic-A and smectic-C phases

| top | pdf |

In the smectic-A and smectic-C phases, the molecules organize themselves into layers, and from a naive point of view one might describe them as forming a one-dimensional periodic lattice in which the individual layers are two-dimensional liquids. In the smectic-A phase, the average molecular axis is normal to the smectic layers while for the smectic-C it makes a finite angle. It follows from this that the smectic-C phase has lower symmetry than the smectic-A, and the phase transition from the smectic-A to smectic-C can be considered as the ordering of a two-component order parameter, i.e. the two components of the projection of the molecular axis on the smectic layers (De Gennes, 1973). Alternatively, Chen & Lubensky (1976) have developed a mean-field theory in which the transition is described by a free-energy density of the Lifshitz form. This will be described in more detail below; however, it corresponds to replacing equation (4.4.2.5) for the free energy by an expression for which the minimum is obtained when the wavevector q, of the order parameter , tilts away from the molecular axis.

The X-ray cross section for the prototypical aligned monodomain smectic-A sample is shown in Fig. 4.4.1.2(b). It consists of a single sharp spot along the molecular axis at somewhere between and that reflects the QLRO along the layer normal, and a diffuse ring in the perpendicular direction at that reflects the SRO within the layer. The scattering cross section for an aligned smectic-C phase is similar to that of the smectic-A except that the molecular tilt alters the intensity distribution of the diffuse ring. This is illustrated in Fig. 4.4.1.2(c) for a monodomain sample. Fig. 4.4.1.2(d) illustrates the scattering pattern for a polydomain smectic-C sample in which the molecular axis remains fixed, but where the smectic layers are randomly distributed azimuthally around the molecular axis.

The naivety of describing these as periodic stacks of two-dimensional liquids derives from the fact that the sharp spot along the molecular axis has a distinct temperature-dependent shape indicative of QLRO that distinguishes it from the Bragg peaks due to true LRO in conventional three-dimensional crystals. Landau and Peierls discussed this effect for the case of two-dimensional crystals (Landau, 1965; Peierls, 1934) and Caillé (1972) extended the argument to the mesomorphic systems.

The usual treatment of thermal vibrations in three-dimensional crystals estimates the Debye–Waller factor by integrating the thermal expectation value for the mean-square amplitude over reciprocal space (Kittel, 1963): where c is the sound velocity, is the Debye frequency and for three-dimensional crystals. In this case, the integral converges and the only effect is to reduce the integrated intensity of the Bragg peak by a factor proportional to . For two-dimensional crystals , and the integral, of the form of , obtains a logarithmic divergence at the lower limit (Fleming et al., 1980). A more precise treatment of thermal vibrations, necessitated by this divergence, is to calculate the relative phase of X-rays scattered from two points in the sample a distance apart. The appropriate integral that replaces the Debye–Waller integral is and the divergence due to the lower limit is cut off by the fact that vanishes as . More complete analysis obtains , where atomic size. If this is exponentiated, as for the Debye–Waller factor, the density–density correlation function can be shown to have the form , where and . In place of the usual periodic density–density correlation function of three-dimensional crystals, the periodic correlations of two-dimensional crystals decay as some power of the distance. This type of positional order, in which the correlations decay as some power of the distance, is the quasi-long-range order (QLRO) that appears in Tables 4.4.1.1 and 4.4.1.2. It is distinguished from true long-range order (LRO) where the correlations continue indefinitely, and short-range order (SRO) where the positional correlations decay exponentially as in either a simple fluid or a nematic liquid crystal.

The usual prediction of Bragg scattering for three-dimensional crystals is obtained from the Fourier transform of the three-dimensional density–density correlation function. Since the correlation function is made up of periodic and random parts, it follows that the scattering cross section is made up of a function at the Bragg condition superposed on a background of thermal diffuse scattering from the random part. In principle, these two types of scattering can be separated empirically by using a high-resolution spectrometer that integrates all of the -function Bragg peak, but only a small part of the thermal diffuse scattering. Since the two-dimensional lattice is not strictly periodic, there is no formal way to separate the periodic and random parts, and the Fourier transform for the algebraic correlation function obtains a cross section that is described by an algebraic singularity of the form (Gunther et al., 1980). In 1972, Caillé (Caillé, 1972) presented an argument that the X-ray scattering line shape for the one-dimensional periodicity of the smectic-A system in three dimensions has an algebraic singularity that is analogous to the line shapes from two-dimensional crystals.

In three-dimensional crystals, both the longitudinal and the shear sound waves satisfy linear dispersion relations of the form . In simple liquids, and also for nematic liquid crystals, only the longitudinal sound wave has such a linear dispersion relation. Shear sound waves are overdamped and the decay rate is given by the imaginary part of a dispersion relation of the form , where is a viscosity coefficient and is the liquid density. The intermediate order of the smectic-A mesomorphic phase, between the three-dimensional crystal and the nematic, results in one of the modes for shear sound waves having the curious dispersion relation , where and are the magnitudes of the components of the acoustic wavevector perpendicular and parallel to , respectively (De Gennes, 1969a; Martin et al., 1972). More detailed analysis, including terms of higher order in , obtains the equivalent of the Debye–Waller factor for the smectic-A as where B and K are smectic elastic constants, , and is the Debye wavevector. On substitution of , the integral can be manipulated into the form , which diverges logarithmically at the lower limit in exactly the same way as the integral for the Debye–Waller factor of the two-dimensional crystal. The result is that the smectic-A phase has a sharp peak, described by an algebraic cusp, at the place in reciprocal space where one would expect a true δ-function Bragg cross section from a truly periodic one-dimensional lattice. In fact, the lattice is not truly periodic and the smectic-A system has only QLRO along the direction .

X-ray scattering experiments to test this idea were carried out on one thermotropic smectic-A system, but the results, while consistent with the theory, were not adequate to provide an unambiguous proof of the algebraic cusp (Als-Nielsen et al., 1980). One of the principal difficulties was due to the fact that, when thermotropic samples are oriented in an external magnetic field in the higher-temperature nematic phase and then gradually cooled through the nematic to smectic-A phase transition, the smectic-A samples usually have mosaic spreads of the order of a fraction of a degree and this is not sufficient for detailed line-shape studies near to the peak. A second difficulty is that, in most of the thermotropic smectic-A phases that have been studied to date, only the lowest-order peak is observed. It is not clear whether this is due to a large Debye–Waller-type effect or whether the form factor for the smectic-A layer falls off this rapidly. Nevertheless, since the factor in the exponent of the cusp depends quadratically on the magnitude of the reciprocal vector , the shape of the cusp for the different orders would constitute a severe test of the theory.

Fortunately, it is common to observe multiple orders for lyotropic smectic-A systems and such an experiment, carried out on the lyotropic smectic-A system formed from a quaternary mixture of sodium dodecyl sulfate, pentanol, water and dodecane, confirmed the theoretical predictions for the Landau–Peierls effect in the smectic-A phase (Safinya, Roux et al., 1986). The problem of sample mosaic was resolved by using a three-dimensional powder. Although the conditions on the analysis are delicate, Safinya et al. demonstrated that for a perfect powder, for which the microcrystals are sufficiently large, the powder line shape does allow unambiguous determination of all of the parameters of the anisotropic line shape.

The only other X-ray study of a critical property on the smectic-A side of the transition has been a measurement of the temperature dependence of the integrated intensity of the peak. For three-dimensional crystals, the integrated intensity of a Bragg peak can be measured for samples with poor mosaic distributions, and because the differences between QLRO and true LRO are only manifest at long distances in real space, or at small wavevectors in reciprocal space, the same is true for the quasi-Bragg peak' of the smectic-A phase. Chan et al. measured the temperature dependence of the integrated intensity of the smectic-A peak across the nematic to smectic-A phase transition for a number of liquid crystals with varying exponents and (Chan, Deutsch et al., 1985). For the Landau–De Gennes free-energy density (equation 4.4.2.5), the theoretical prediction is that the critical part of the integrated intensity should vary as , where when the critical part of the heat capacity diverges according to the power law . Six samples were measured with values of varying from 0 to 0.5. Although for samples with the critical intensity did vary as , there were systematic deviations for smaller values of , and for the measured values of x were in the range 0.7 to 0.76. The origin of this discrepancy is not at present understood.

Similar integrated intensity measurements in the vicinity of the first-order nematic to smectic-C transition cannot easily be made in smectic-C samples since the magnetic field aligns the molecular axis , and when the layers form at some angle to the layer normals are distributed along the full 2π of azimuthal directions around , as shown in Fig. 4.4.1.2(d). The X-ray scattering pattern for such a sample is a partial powder with a peak-intensity distribution that forms a ring of radius . The opening of the single spot along the average molecular axis into a ring can be used to study either the nematic to smectic-C or the smectic-A to smectic-C transition (Martinez-Miranda et al., 1986).

The statistical physics in the region of the phase diagram surrounding the triple point, where the nematic, smectic-A and smectic-C phases meet, has been the subject of considerable theoretical speculation (Chen & Lubensky, 1976; Chu & McMillan, 1977; Benguigui, 1979; Huang & Lien, 1981; Grinstein & Toner, 1983). The best representation of the observed X-ray scattering structure near the nematic to smectic-A, the nematic to smectic-C and the nematic/smectic-A/smectic-C (NAC) multicritical point is obtained from the mean-field theory of Chen and Lubensky, the essence of which is expressed in terms of an energy density of the form where is the Fourier component of the electron density: The quantities , , and are all positive definite; however, the sign of A and depends on temperature. For and , the free energy, including the higher-order terms, is minimized by and the nematic is the stable phase. For and , the minimum in the free energy occurs for a nonvanishing value for in the vicinity of , corresponding to the uniaxial smectic-A phase; however, for , the free-energy minimum occurs for a nonvanishing with a finite value of , corresponding to smectic-C order. The special point in the phase diagram where two terms in the free energy vanish simultaneously is known as a Lifshitz point' (Hornreich et al., 1975). In the present problem, this occurs at the triple point where the nematic, smectic-A and smectic-C phases coexist. Although there have been other theoretical models for this transition, the best agreement between the observed and theoretical line shapes for the X-ray scattering cross sections is based on the Chen–Lubensky model. Most of the results from light-scattering experiments in the vicinity of the NAC triple point also agree with the main features predicted by the Chen–Lubensky model; however, there are some discrepancies that are not explained (Solomon & Litster, 1986).

The nematic to smectic-C transition in the vicinity of this point is particularly interesting in that, on approaching the nematic to smectic-C transition temperature from the nematic phase, the X-ray scattering line shapes first appear to be identical to the shapes usually observed on approaching the nematic to smectic-A phase transition; however, within approximately 0.1 K of the transition, they change to shapes that clearly indicate smectic-C-type fluctuations. Details of this crossover are among the strongest evidence supporting the Lifshitz idea behind the Chen–Lubensky model.

#### 4.4.3.2. Modulated smectic-A and smectic-C phases

| top | pdf |

Previously, we mentioned that, although the reciprocal-lattice spacing for many smectic-A phases corresponds to , where L is the molecular length, there are a number of others for which is between and (Leadbetter, Frost, Gaughan, Gray & Mosley, 1979; Leadbetter et al., 1977). This suggests the possibility of different types of smectic-A phases in which the bare molecular length is not the sole determining factor of the period d. In 1979, workers at Bordeaux optically observed some sort of phase transition between two phases that both appeared to be of the smectic-A type (Sigaud et al., 1979). Subsequent X-ray studies indicated that in the nematic phase these materials simultaneously displayed critical fluctuations with two separate periods (Levelut et al., 1981; Hardouin et al., 1980, 1983; Ratna et al., 1985, 1986; Chan, Pershan et al., 1985, 1986; Safinya, Varady et al., 1986; Fontes et al., 1986) and confirmed phase transitions between phases that have been designated smectic- with period , smectic- with period and smectic- with period . Stimulated by the experimental results, Prost and co-workers generalized the De Gennes mean-field theory by writing where 1 and 2 refer to two different density waves (Prost, 1979; Prost & Barois, 1983; Barois et al., 1985). In the special case that the free energy represented by equation (4.4.2.3) must be generalized to include terms like that couple the two order parameters. Suitable choices for the relative values of the phenomenological parameters of the free energy then result in minima that correspond to any one of these three smectic-A phases. Much more interesting, however, was the observation that even if the two order parameters could still be coupled together if and were not collinear, as illustrated in Fig. 4.4.3.1(a), such that . Prost et al. predicted the existence of phases that are modulated in the direction perpendicular to the average layer normal with a period . Such a modulated phase has been observed and is designated as the smectic-A (Hardouin et al., 1981). Similar considerations apply to the smectic-C phases and the modulated phase is designated smectic-; (Hardouin et al., 1982; Huang et al., 1984; Safinya, Varady et al., 1986).

 Figure 4.4.3.1 | top | pdf |(a) Schematic illustration of the necessary condition for coupling between order parameters when ; . (b) Positions of the principal peaks for the indicated smectic-A phases.

#### 4.4.3.3. Surface effects

| top | pdf |

The effects of surfaces in inducing macroscopic alignment of mesomorphic phases have been important both for technological applications and for basic research (Sprokel, 1980; Gray & Goodby, 1984). Although there are a variety of experimental techniques that are sensitive to mesomorphic surface order (Beaglehole, 1982; Faetti & Palleschi, 1984; Faetti et al., 1985; Gannon & Faber, 1978; Miyano, 1979; Mada & Kobayashi, 1981; Guyot-Sionnest et al., 1986), it is only recently that X-ray scattering techniques have been applied to this problem. In one form or another, all of the techniques for obtaining surface specificity in an X-ray measurement make use of the fact that the average interaction between X-rays and materials can be treated by the introduction of a dielectric constant , where is the electron density, is the classical radius of the electron, and and are the angular frequency and the wavelength of the X-ray. Since , X-rays that are incident at a small angle to the surface will be refracted in the material toward a smaller angle , where the `critical angle' for most liquid crystals (Warren, 1968). Although this is a small angle, it is at least two orders of magnitude larger than the practical angular resolution available in modern X-ray spectrometers (Als-Nielsen et al., 1982; Pershan & Als-Nielsen, 1984; Pershan et al., 1987). One can demonstrate that for many conditions the specular reflection is given by where , is the normal derivative of the electron density averaged over a region in the surface that is defined by the coherence area of the incident X-ray, and is the Fresnel reflection law that is calculated from classical optics for a flat interface between the vacuum and a material of dielectric constraint . Since the condition for specular reflection, that the incident and scattered angles are equal and in the same plane, requires that the scattering vector be parallel to the surface normal, it is quite practical to obtain, for flat surfaces, an unambiguous separation of the specular reflection signal from all other scattering events.

Fig. 4.4.3.2(a) illustrates the specular reflectivity from the free nematic–air interface for the liquid crystal 4′-octyloxybiphenyl-4-carbonitrile (8OCB) 0.050 K above the nematic to smectic-A phase-transition temperature (Pershan & Als-Nielsen, 1984). The dashed line is the Fresnel reflection in units of , where the peak at corresponds to surface-induced smectic order in the nematic phase: i.e. the selection rule for specular reflection has been used to separate the specular reflection from the critical scattering from the bulk. Since the full width at half maximum is exactly equal to the reciprocal of the correlation length for critical fluctuations in the bulk, at all temperatures from up to values near to the nematic to isotropic transition, , it is clear this is an example where the gravitationally induced long-range order in the surface position has induced mesomorphic order that has long-range correlations parallel to the surface. Along the surface normal, the correlations have only the same finite range as the bulk critical fluctuations. Studies on a number of other nematic (Gransbergen et al., 1986; Ocko et al., 1987) and isotropic surfaces (Ocko, Braslau et al., 1986) indicate features that are specific to local structure of the surface.

 Figure 4.4.3.2 | top | pdf |Specular reflectivity of ∼8 keV X-rays from the air–liquid interface of the nematic liquid crystal 8OCB 0.05 K above the nematic to smectic-A transition temperature. The dashed line is the Fresnel reflection law as described in the text.

### References

Als-Nielsen, J., Christensen, F. & Pershan, P. S. (1982). Smectic-A order at the surface of a nematic liquid crystal: synchrotron X-ray diffraction. Phys. Rev. Lett. 48, 1107–1110.
Als-Nielsen, J., Litster, J. D., Birgeneau, R. J., Kaplan, M., Safinya, C. R., Lindegaard, A. & Mathiesen, S. (1980). Observation of algebraic decay of positional order in a smectic liquid crystal. Phys. Rev. B, 22, 312–320.
Barois, P., Prost, J. & Lubensky, T. C. (1985). New critical points in frustrated smectics. J. Phys. (Paris), 46, 391–399.
Beaglehole, D. (1982). Pretransition order on the surface of a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 89, 319–325.
Benguigui, L. (1979). A Landau theory of the NAC point. J. Phys. (Paris) Colloq. 40, C3–419–C3–421.
Caillé, A. (1972). Remarques sur la diffusion des rayons X dans les smectiques A. C. R. Acad. Sci. Sér. B, 274, 891–893.
Chan, K. K., Deutsch, M., Ocko, B. M., Pershan, P. S. & Sorensen, L. B. (1985). Integrated X-ray scattering intensity measurement of the order parameter at the nematic to smectic-A phase transition. Phys. Rev. Lett. 54, 920–923.
Chan, K. K., Pershan, P. S., Sorensen, L. B. & Hardouin, F. (1985). X-ray scattering study of the smectic-A1 to smectic-A2 transition. Phys. Rev. Lett. 54, 1694–1697.
Chan, K. K., Pershan, P. S., Sorensen, L. B. & Hardouin, F. (1986). X-ray studies of transitions between nematic, smectic-A1, -A2, and -Ad phases. Phys. Rev. A, 34, 1420–1433.
Chen, J. H. & Lubensky, T. C. (1976). Landau–Ginzberg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys. Rev. A, 14, 1202–1207.
Chu, K. C. & McMillan, W. L. (1977). Unified Landau theory for the nematic, smectic A and smectic C phases of liquid crystals. Phys. Rev. A, 15, 1181–1187.
De Gennes, P. G. (1969a). Conjectures sur l'état smectique. J. Phys. (Paris) Colloq. 30, C4–65–C4–71.
De Gennes, P. G. (1973). Some remarks on the polymorphism of smectics. Mol. Cryst. Liq. Cryst. 21, 49–76.
Faetti, S., Gatti, M., Palleschi, V. & Sluckin, T. J. (1985). Almost critical behavior of the anchoring energy at the interface between a nematic liquid crystal and a substrate. Phys. Rev. Lett. 55, 1681–1684.
Faetti, S. & Palleschi, V. (1984). Nematic isotropic interface of some members of the homologous series of the 4-cyano-4′-(n-alkyl)biphenyl liquid crystals. Phys. Rev. A, 30, 3241–3251.
Fleming, R. M., Moncton, D. E., McWhan, D. B. & DiSalvo, F. J. (1980). In Ordering in Two Dimensions. Proceedings of an International Conference held at Lake Geneva, Wisconsin, edited by S. K. Sinha, pp. 131–134. New York: North-Holland.
Fontes, E., Heiney, P. A., Haseltine, J. H. & Smith, A. B. III (1986). High resolution X-ray scattering study of the multiply reentrant polar mesogen DB9ONO2. J. Phys. (Paris), 47, 1533–1539.
Gannon, M. G. J. & Faber, T. E. (1978). The surface tension of nematic liquid crystals. Philos. Mag. A37, 117–135.
Gransbergen, E. F., De Jeu, W. H. & Als-Nielsen, J. (1986). Antiferroelectric surface layers in a liquid crystal as observed by synchrotron X-ray scattering. J. Phys. (Paris), 47, 711–718.
Gray, G. W. & Goodby, J. W. (1984). Smectic Liquid Crystals: Textures and Structures. Glasgow: Leonard Hill.
Grinstein, G. & Toner, J. (1983). Dislocation-loop theory of the nematic–smectic A–smectic C multicritical point. Phys. Rev. Lett. 51, 2386–2389.
Gunther, L., Imry, Y. & Lajzerowicz, J. (1980). X-ray scattering in smectic-A liquid crystals. Phys. Rev. A, 22, 1733–1740.
Guyot-Sionnest, P., Hsiung, H. & Shen, Y. R. (1986). Surface polar ordering in a liquid crystal observed by optical second-harmonic generation. Phys. Rev. Lett. 57, 2963–2966.
Hardouin, F., Levelut, A. M., Achard, M. F. & Sigaud, G. (1983). Polymorphisme des substances mésogenes à molécules polaires. I. Physico-chimie et structure. J. Chim. Phys. 80, 53–64.
Hardouin, F., Levelut, A. M., Benattar, J. J. & Sigaud, G. (1980). X-ray investigations of the smectic A1–smectic A2 transition. Solid State Commun. 33, 337–340.
Hardouin, F., Sigaud, G., Tinh, N. H. & Achard, M. F. (1981). A fluid smectic A antiphase in a pure nitro rod-like compound. J. Phys. (Paris) Lett. 42, L63–L66.
Hardouin, F., Tinh, N. H., Achard, M. F. & Levelut, A. M. (1982). A new thermotropic smectic phase made of ribbons. J. Phys. (Paris) Lett. 43, L327–L331.
Hornreich, R. M., Luban, M. & Shtrikman, S. (1975). Critical behavior at the onset of k-space instability on the lambda line. Phys. Rev. Lett. 35, 1678–1681.
Huang, C. C. & Lien, S. C. (1981). Nature of a nematic–smectic-A–smectic-C multicritical point. Phys. Rev. Lett. 47, 1917–1920.
Huang, C. C., Lien, S. C., Dumrongrattana, S. & Chiang, L. Y. (1984). Calorimetric studies near the smectic-A1–smectic-Ã phase transition of a liquid crystal compound. Phys. Rev. A, 30, 965–967.
Kittel, C. (1963). Quantum Theory of Solids. New York: John Wiley.
Landau, L. D. (1965). In Collected Papers of L. D. Landau, edited by D. ter Haar, pp. 193–216. New York: Gordon and Breach.
Leadbetter, A. J., Durrant, J. L. A. & Rugman, M. (1977). The density of 4-n-octyl-4′-cyano-biphenyl (8CB). Mol. Cryst. Liq. Cryst. 34, 231–235.
Leadbetter, A. J., Frost, J. C., Gaughan, J. P., Gray, G. W. & Mosley, A. (1979). The structure of smectic A phases of compounds with cyano end groups. J. Phys. (Paris) Colloq. 40, C3–375–C3–380.
Levelut, A. M., Tarento, R. J., Hardouin, F., Achard, M. F. & Sigaud, G. (1981). Number of SA phases. Phys. Rev. A, 24, 2180–2186.
Mada, H. & Kobayashi, S. (1981). Surface order parameter of 4-n-heptyl-4′-cyanobiphenyl. Mol. Cryst. Liq. Cryst. 66, 57–60.
Martin, P. C., Parodi, O. & Pershan, P. S. (1972). Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A, 6, 2401–2420.
Martinez-Miranda, L. J., Kortan, A. R. & Birgeneau, R. J. (1986). X-ray study of fluctuations near the nematic–smectic-A–smectic-C multicritical point. Phys. Rev. Lett. 56, 2264–2267.
Miyano, K. (1979). Wall-induced pretransitional birefringence: a new tool to study boundary aligning forces in liquid crystals. Phys. Rev. Lett. 43, 51–54.
Ocko, B. M., Braslau, A., Pershan, P. S., Als-Nielsen, J. & Deutsch, M. (1986). Quantized layer growth at liquid crystal surfaces. Phys. Rev. Lett. 57, 94–97.
Ocko, B. M., Pershan, P. S., Safinya, C. R. & Chiang, L. Y. (1987). Incommensurate smectic order at the free surface in the nematic phase of DB7NO2. Phys. Rev. A, 35, 1868–1872.
Peierls, R. E. (1934). Transformation temperatures. Helv. Phys. Acta Suppl. 2, 81–83.
Pershan, P. S. & Als-Nielsen, J. (1984). X-ray reflectivity from the surface of a liquid crystal: surface structure and absolute value of critical fluctuations. Phys. Rev. Lett. 52, 759–762.
Pershan, P. S., Braslau, A., Weiss, A. H. & Als-Nielsen, J. (1987). Smectic layering at the free surface of liquid crystals in the nematic phase: X-ray reflectivity. Phys. Rev. A, 35, 4800–4813.
Prost, J. (1979). Smectic A to smectic A phase transition. J. Phys. (Paris), 40, 581–587.
Prost, J. & Barois, P. (1983). Polymorphism in polar mesogens. II. Theoretical aspects. J. Chim. Phys. 80, 65–81.
Ratna, B. R., Nagabhushana, C., Raja, V. N., Shashidhar, R. & Chandrasekhar, S. (1986). Density, dielectric and X-ray studies of smectic A–smectic A transitions. Mol. Cryst. Liq. Cryst. 138, 245–257.
Ratna, B. R., Shashidhar, R. & Raja, V. N. (1985). Smectic-A phase with two collinear incommensurate density modulations. Phys. Rev. Lett. 55, 1476–1478.
Safinya, C. R., Roux, D., Smith, G. S., Sinha, S. K., Dimon, P., Clark, N. A. & Bellocq, A. M. (1986). Steric interactions in a model multimembrane system: a synchrotron X-ray study. Phys. Rev. Lett. 57, 2718–2721.
Safinya, C. R., Varady, W. A., Chiang, L. Y. & Dimon, P. (1986). X-ray study of the nematic phase and smectic-A1 to smectic-Ã phase transition in heptylphenyl nitrobenzoyloxybenzoate (DB7NO2). Phys. Rev. Lett. 57, 432–435.
Sigaud, G., Hardouin, F., Achard, M. F. & Gasparoux, H. (1979). Anomalous transitional behaviour in mixtures of liquid crystals: a new transition of SA–SA type? J. Phys. (Paris) Colloq. 40, C3–356–C3–359.
Solomon, L. & Litster, J. D. (1986). Light scattering measurements in the 7S5–8OCB nematic–smectic-A–smectic-C liquid-crystal system. Phys. Rev. Lett. 56, 2268–2271.
Sprokel, G. E. (1980). The Physics and Chemistry of Liquid Crystal Devices. New York: Plenum.