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corresponding to the substitution rule S ! SL, L ! LLS as
well as two other non-equivalent ones (see Janssen, 1995). The
eigenvalues �i are obtained by calculating

det jS� �Ij ¼ 0:

The evaluation of the determinant gives the characteristic poly-
nomial
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1=2
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2 and
�2 ¼ 1=�2 ¼ 2� �, and the same eigenvectors

w1 ¼
1

�

� �
; w2 ¼

1

�1=�

� �

as for the Fibonacci sequence. Rewriting the eigenvalue equation
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Identifying the eigenvector

1

�

� �

with

S

L

� �

shows that the infinite 1D sequence sðrÞ multiplied by powers of
its eigenvalue �2 (scaling operation) remains invariant (each new
lattice point coincides with one of the original lattice):

sð�2rÞ ¼ sðrÞ:

The fractal sequence can be described on the same reciprocal and
direct bases as the Fibonacci sequence. The only difference in the
2D direct-space description is the fractal character of the
perpendicular-space component of the hyperatoms (Fig. 4.6.2.12)
(see Zobetz, 1993).

4.6.3. Reciprocal-space images

4.6.3.1. Incommensurately modulated structures (IMSs)

One-dimensionally modulated structures are the simplest
representatives of IMSs. The vast majority of the one hundred or
so IMSs known so far belong to this class (Cummins, 1990).
However, there is also an increasing number of IMSs with 2D or
3D modulation. The dimension d of the modulation is defined by
the number of rationally independent modulation wavevectors
(satellite vectors) qi (Fig. 4.6.3.1). The electron-density function
of a dD modulated 3D crystal can be represented by the Fourier
series

�ðrÞ ¼ ð1=VÞ
P
H

FðHÞ expð�2�iH � rÞ:

The Fourier coefficients (structure factors) FðHÞ differ from zero
only for reciprocal-space vectors H ¼

P3
i¼1hia

�
i þ

Pd
j¼1mjqj ¼P3þd

i¼1 hia
�
i with hi;mj 2 Z. The d satellite vectors are given by

qj ¼ a�3þj ¼
P3

i¼1�ija
�
i , with �ij a 3� d matrix �. In the case of an
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Fig. 4.6.2.11. 2D direct-space embedding of the Fibonacci chain as a
modulated structure. The average period is ð3� �ÞS. The square lattice in the
quasicrystal description shown in Fig. 4.6.2.8 is indicated by grey lines. The
rod-like atomic surfaces are now inclined relative to Vk and arranged so as to
give a saw-tooth modulation wave.

Fig. 4.6.2.12. (a) Three steps in the development of the fractal atomic surface
of the squared Fibonacci sequence starting from an initiator and a generator.
The action of the generator is to cut a piece from each side of the initiator
and to add it where the initiator originally ended. This is repeated, cutting
thinner and thinner pieces each time from the generated structures. (b)
Magnification sequence of the fractal atomic surface illustrating its self-
similarity. Each successive figure represents a magnification of a selected
portion of the previous figure (from Zobetz, 1993).
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IMS, at least one entry to � has to be irrational. The wavelength
of the modulation function is �j ¼ 1=qj. The set of vectors
H forms a Fourier module M� ¼ fH ¼

P3þd
i¼1 hia

�
i jhi 2 Zg of

rank n ¼ 3þ d, which can be decomposed into a rank 3 and a
rank d submodule M� ¼ M�1 �M�2 : M�1 ¼ fh1a

�
1 þ h2a

�
2 þ h3a

�
3g

corresponds to a Z module of rank 3 in a 3D subspace (the
physical space), M�2 ¼ fh4a

�
4 þ . . .þ h3þda�3þdg corresponds to a Z

module of rank d in a dD subspace (perpendicular space). The
submodule M1 is identical to the 3D reciprocal lattice �� of the
average structure. M2 results from the projection of the
perpendicular-space component of the ð3þ dÞD reciprocal lattice
�� upon the physical space. Owing to the coincidence of one
subspace with the physical space, the dimension of the embed-
ding space is given as ð3þ dÞD and not as nD. This terminology
points out the special role of the physical space.

Hence the reciprocal-basis vectors a�i ; i ¼ 1; . . . ; 3þ d, can be
considered to be physical-space projections of reciprocal-basis
vectors d�i ; i ¼ 1; . . . ; 3þ d, spanning a ð3þ dÞD reciprocal
lattice ��:

�� ¼ H ¼
P3þd

i¼1

hid
�
i

���hi 2 Z

� �
;

d�i ¼ ða
�
i ; 0Þ; i ¼ 1; . . . ; 3 and d�3þj ¼ ða

�
3þj; ce�j Þ; j ¼ 1; . . . ; d:

The first vector component of d�i refers to the physical space, the
second to the perpendicular space spanned by the mutually
orthogonal unit vectors ej. c is an arbitrary constant which can be
set to 1 without loss of generality.

A direct lattice � with basis di, i ¼ 1; . . . ; 3þ d and
di � d

�
j ¼ �ij, can be constructed according to

� ¼ r ¼
P3þd

i¼1

midi

���mi 2 Z

� �
;

di ¼ ai;�
Pd
j¼1

�ijð1=cÞej

 !
; i ¼ 1; . . . ; 3

and d3þj ¼ 0; ð1=cÞe�j
� �

; j ¼ 1; . . . ; d:

Consequently, the aperiodic structure in physical space Vk is
equivalent to a 3D section of the ð3þ dÞD hypercrystal.

4.6.3.1.1. Indexing

The 3D reciprocal space M� of a ð3þ dÞD IMS consists of two
separable contributions,

M� ¼ H ¼
P3
i¼1

hia
�
i þ

Pd
j¼1

mjqj

( )
;

the set of main reflections ðmj ¼ 0Þ and the set of satellite
reflections ðmj 6¼ 0Þ (Fig. 4.6.3.1). In most cases, the modulation is
only a weak perturbation of the crystal structure. The main
reflections are related to the average structure, the satellites to
the difference between the average and actual structure.
Consequently, the satellite reflections are generally much weaker
than the main reflections and can be easily identified. Once the
set of main reflections has been separated, a conventional basis
a�i ; i ¼ 1; . . . ; 3, for �� is chosen.

The only ambiguity is in the assignment of rationally inde-
pendent satellite vectors qi. They should be chosen inside the
reciprocal-space unit cell (Brillouin zone) of �� in such a way as
to give a minimal number d of additional dimensions. If satellite
vectors reach the Brillouin-zone boundary, centred ð3þ dÞD
Bravais lattices are obtained. The star of satellite vectors has to
be invariant under the point-symmetry group of the diffraction
pattern. There should be no contradiction to a reasonable
physical modulation model concerning period or propagation
direction of the modulation wave. More detailed information on
how to find the optimum basis and the correct setting is given by
Janssen et al. (2004) and Janner et al. (1983a,b).

4.6.3.1.2. Diffraction symmetry

The Laue symmetry group KL ¼ fRg of the Fourier module
M�,

M� ¼ H ¼
P3
i¼1

hia
�
i þ

Pd
j¼1

mjqj ¼
P3þd

i¼1

hia
�
i

( )
;�� ¼ H ¼

P3
i¼1

hia
�
i

� �
;

is isomorphous to or a subgroup of one of the 11 3D crystal-
lographic Laue groups leaving �� invariant. The action of the
point-group symmetry operators R on the reciprocal basis
a�i ; i ¼ 1; . . . ; 3þ d, can be written as

Ra�i ¼
P3þd

j¼1

�T
ij ðRÞa

�
j ; i ¼ 1; . . . ; 3þ d:
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Fig. 4.6.3.1. Schematic diffraction patterns for IMSs with (a) 1D, (b) 2D and
(c) 3D modulation. The satellite vectors correspond to q ¼ �1a

�
1 in (a),

q1 ¼ �11a
�
1 þ ð1=2Þa

�
2 and q2 ¼ ��12a�1 þ ð1=2Þa

�
2 , where �11 ¼ �12, in (b),

and q1 ¼ �11a
�
1 þ �31a

�
3 , q2 ¼ �12ð�a�1 þ a�2Þ þ �32a

�
3 , q3 ¼ ��13a�2 þ �33a�3 ,

where �11 ¼ �12 ¼ �13 and �31 ¼ �32 ¼ �33, in (c). The areas of the circles are
proportional to the reflection intensities. Main (filled circles) and satellite
(open circles) reflections are indexed (after Janner et al., 1983b).
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The ð3þ dÞ � ð3þ dÞ matrices �TðRÞ form a finite group of
integral matrices which are reducible, since R is already an
orthogonal transformation in 3D physical space. Consequently, R
can be expressed as pair of orthogonal transformations ðRk;R?Þ
in 3D physical and dD perpendicular space, respectively. Owing
to their mutual orthogonality, no symmetry relationship exists
between the set of main reflections and the set of satellite
reflections. �TðRÞ is the transpose of �ðRÞ which acts on vector
components in direct space.

For the ð3þ dÞD direct-space (superspace) symmetry operator
ðRs; tsÞ and its matrix representation �ðRs; tsÞ on �, the following
decomposition can be performed:

�ðRsÞ ¼
�kðRÞ 0

�MðRÞ �?ðRÞ

� �
and ts ¼ ðt3; tdÞ:

�kðRÞ is a 3� 3 matrix, �?ðRÞ is a d� d matrix and �MðRÞ is a
d� 3 matrix. The translation operator ts consists of a 3D vector t3
and a dD vector td. According to Janner & Janssen (1979), �MðRÞ
can be derived from �MðRÞ ¼ ��kðRÞ � �?ðRÞ�. �MðRÞ has
integer elements only as it contains components of primitive-
lattice vectors of ��, whereas � in general consists of a rational
and an irrational part: � ¼ �i þ �r. Thus, only the rational part
gives rise to nonzero entries in �MðRÞ. With the order of the Laue
group denoted by N, one obtains �i � ð1=NÞ

P
R�
?ðRÞ��kðRÞ�1,

where �?ðRÞ�i�kðRÞ�1 ¼ �i, implying that �MðRÞ ¼ �r�kðRÞ
� �?ðRÞ�r and 0 ¼ �i�kðRÞ � �?ðRÞ�i.

Example
In the case of a 3D IMS with 1D modulation ðd ¼ 1Þ the 3� d
matrix

� ¼
�1
�2
�3

0
@

1
A

has the components of the wavevector q ¼
P3

i¼1�ia
�
i ¼ qi þ qr.

�?ðRÞ ¼ " ¼ �1 because for d ¼ 1, q can only be transformed
into �q. Corresponding to qi � ð1=NÞ

P
R"Rq, one obtains

RTqi � "qi (modulo ��). The 3� 1 row matrix �MðRÞ is
equivalent to the difference vector between RTq and "q
(Janssen et al., 2004).

For a monoclinic modulated structure with point group 2=m for
M� (unique axis a3) and satellite vector q ¼ ð1=2Þa1

� þ �3a3
�,

with �3 an irrational number, one obtains

qi � ð1=NÞ
P
R

"Rq

¼ 1
4 þ1 �

1 0 0

0 1 0

0 0 1

0
B@

1
CA

1=2

0

�3

0
B@

1
CA

0
B@

þ 1 �

�11 0 0

0 �11 0

0 0 1

0
B@

1
CA

1=2

0

�3

0
B@

1
CA� 1 �

�11 0 0

0 �11 0

0 0 �11

0
B@

1
CA

1=2

0

�3

0
B@

1
CA

�1 �

1 0 0

0 1 0

0 0 �11

0
B@

1
CA

1=2

0

�3

0
B@

1
CA
1
CA

¼

0

0

�3

0
B@

1
CA:

From the relations RTqi � "qi ðmodulo ��Þ, it can be shown that
the symmetry operations 1 and 2 are associated with the
perpendicular-space transformations " ¼ 1, and m and �11 with
" ¼ �1. The matrix �MðRÞ is given by

�Mð2Þ ¼ �r�kð2Þ � �?ð2Þ�r

¼

1=2

0

0

0
B@

1
CA

�11 0 0

0 �11 0

0 0 1

0
B@

1
CA� ðþ1Þ

1=2

0

0

0
B@

1
CA ¼

�11

0

0

0
B@

1
CA

for the operation 2, for instance.
The matrix representations �TðRsÞ of the symmetry operators

R in reciprocal ð3þ dÞD superspace decompose according to

�TðRsÞ ¼
�kTðRÞ �MTðRÞ

0 �?TðRÞ

� �
:

Phase relationships between modulation functions of symmetry-
equivalent atoms can give rise to systematic extinctions of
different classes of satellite reflections. The extinction rules may
include indices of both main and satellite reflections. A full list of
systematic absences is given in the table of ð3þ 1ÞD superspace
groups (Janssen et al., 2004). Thus, once point symmetry and
systematic absences are found, the superspace group can be
obtained from the tables in a way analogous to that used for
regular 3D crystals. A different approach for the symmetry
description of IMSs from the 3D Fourier-space perspective has
been given by Dräger & Mermin (1996).

4.6.3.1.3. Structure factor

The structure factor of a periodic structure is defined as the
Fourier transform of the density distribution �ðrÞ of its unit cell
(UC):

FðHÞ ¼
R
UC

�ðrÞ expð2�iH � rÞ dr:

The same is valid in the case of the (3 + d)D description of IMSs.
The parallel- and perpendicular-space components are ortho-
gonal to each other and can be separated. The Fourier transform
of the parallel-space component of the electron-density distri-
bution of a single atom gives the usual atomic scattering factors
fkðH

kÞ. For the structure-factor calculation, one does not need to
use �ðrÞ explicitly. The hyperatoms correspond to the convolution
of the electron-density distribution in 3D physical space with the
modulation function in dD perpendicular space. Therefore, the
Fourier transform of the (3 + d)D hyperatoms is simply the
product of the Fourier transform fkðH

kÞ of the physical-space
component with the Fourier transform of the perpendicular-
space component, the modulation function.

For a general displacive modulation one obtains for the ith
coordinate xik of the kth atom in 3D physical space

xik ¼ �xxik þ uikð�xx4; . . . ; �xx3þdÞ; i ¼ 1; . . . ; 3;

where �xxik are the basic-structure coordinates and uikð�xx4; . . . ; �xx3þdÞ

are the modulation functions with unit periods in their arguments
(Fig. 4.6.3.2). The arguments are �xx3þj ¼ �ij �xx

0
ik þ tj; j ¼ 1; . . . ; d,

where �xx0ik are the coordinates of the kth atom referred to the
origin of its unit cell and tj are the phases of the modulation
functions. The modulation functions uikð�xx4; . . . ; �xx3þdÞ themselves
can be expressed in terms of a Fourier series as
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uik �xx4; . . . ; �xx3þd

� �
¼
P1

n1¼1

. . .
P1

nd¼1

uC
n1...nd

ik cos 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	


þ uS
n1...nd

ik sin 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	�
;

where nj are the orders of harmonics for the jth modulation wave
of the ith component of the kth atom and their amplitudes are
uC

n1...nd

ik and uS
n1...nd

ik .
Analogous expressions can be derived for a density modula-

tion, i.e., the modulation of the occupation probability
pk �xx4; . . . ; �xx3þd

� �
:

pk �xx4; . . . ; �xx3þd

� �
¼
P1

n1¼1

. . .
P1

nd¼1

pC
n1...nd

k cos 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	


þ pS
n1...nd

k sin 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	�
;

and for the modulation of the tensor of thermal parameters
Bijk �xx4; . . . ; �xx3þd

� �
:

Bijk �xx4; . . . ; �xx3þd

� �
¼
P1

n1¼1

. . .
P1

nd¼1

BC
n1...nd

ijk cos 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	


þ BS
n1...nd

ijk sin 2� n1 �xx4 þ . . .þ nd �xx3þd

� �� 	�
:

The resulting structure-factor formula is

FðHÞ ¼
PN0
k¼1

P
ðR; tÞ

R1
0

d�xx4; k . . .
R1
0

d�xx3þd; kfkðH
kÞpk

� exp �
P3þd

i; j¼1

hi RBijkRT
� 	

hj þ 2�i
P3þd

j¼1

hjRxjk þ hjtj

 !

for summing over the set (R, t) of superspace symmetry opera-
tions and the set of N0 atoms in the asymmetric unit of the
ð3þ dÞD unit cell (Yamamoto, 1982). Different approaches

without numerical integration based on analytical expressions
including Bessel functions have also been developed. For more
information see Paciorek & Chapuis (1994), Petricek, Maly &
Cisarova (1991), and references therein.

For illustration, some fundamental IMSs will be discussed
briefly (see Korekawa, 1967; Böhm, 1977).

Harmonic density modulation. A harmonic density modulation
can result on average from an ordered distribution of vacancies
on atomic positions. For an IMS with N atoms per unit cell one
obtains for a harmonic modulation of the occupancy factor

pk ¼ ðp
0
k=2Þ 1þ cos 2� �xx4; k þ ’k

� �� 	
 �
; 0 	 p0

k 	 1;

the structure-factor formula for the mth order satellite
ð0 	 m 	 1Þ

F0ðHÞ ¼ ð1=2Þ
PN
k¼1

fkðH
kÞTkðH

kÞ expð2�iH � rkÞ;

FmðHÞ ¼ ð1=2Þ
PN
k¼1

fkðH
kÞTkðH

kÞðp0
k=2Þ

jmj exp 2�i
P3
i¼1

hixik þm’k

� �� 
:

Thus, a linear correspondence exists between the structure-factor
magnitudes of the satellite reflections and the amplitude of the
density modulation. Furthermore, only first-order satellites exist,
since the modulation wave consists only of one term. An
important criterion for the existence of a density modulation is
that a pair of satellites around the origin of the reciprocal lattice
exists (Fig. 4.6.3.3).

Symmetric rectangular density modulation. The box-function-
like modulated occupancy factor can be expanded into a Fourier
series,

pk ¼ p0
kð4=�Þ

P1
n¼1

½ð�1Þnþ1=ð2n� 1Þ� cos 2�ð2n� 1Þð�xx4; k þ ’kÞ
� 	� �

;

0 	 p0
k 	 1;

and the resulting structure factor of the mth order satellite is

F0ðHÞ ¼ ð1=2Þ
PN
k¼1

fkðH
kÞTkðH

kÞ exp 2�i
P3
i¼1

hixik

� �
;

FmðHÞ ¼ ð1=�mÞ sinðm�=2Þ
PN
k¼1

fkðH
kÞTkðH

kÞp0
k

� exp 2�i
P3
i¼1

hixik þm’k

� �� 
:

According to this formula, only odd-order satellites occur in the
diffraction pattern. Their structure-factor magnitudes decrease
linearly with the order jmj (Fig. 4.6.3.3b).

Harmonic displacive modulation. The displacement of the
atomic coordinates is given by the function

xik ¼ x0
ik þ Aik cos 2�ð�xx4; k þ ’kÞ

� 	
; i ¼ 1; . . . ; 3;

and the structure factor by
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Fig. 4.6.3.2. The relationships between the coordinates x1k; x4k; �xx1; �xx4 and the
modulation function u1k in a special section of the ð3þ dÞD space.
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F0ðHÞ ¼
PN
k¼1

fkðH
kÞTkðH

kÞJ0ð2�Hk �AkÞ exp 2�i
P3
i¼1

hixik

� �
;

FmðHÞ ¼
PN
k¼1

fkðH
kÞTkðH

kÞJmð2�Hk �AkÞ

� exp 2�i
P3
i¼1

hixik þm’k

� �� 
:

The structure-factor magnitudes of the mth-order satellite
reflections are a function of the mth-order Bessel functions. The
arguments of the Bessel functions are proportional to the scalar
products of the amplitude and the diffraction vector. Conse-
quently, the intensity of the satellites will vary characteristically
as a function of the length of the diffraction vector. Each main
reflection is accompanied by an infinite number of satellite
reflections (Figs. 4.6.3.3c and 4.6.3.4).

4.6.3.2. Composite structures (CSs)

Composite structures consist of N mutually incommensurate
substructures with N basic sublattices �� ¼ fa1�; a2�; a3�g, with
� ¼ 1; . . . ;N. The reciprocal sublattices ��� ¼ fa

�
1�; a�2�; a�3�g, with

� ¼ 1; . . . ;N, have either only the origin of the reciprocal lattice
or one or two reciprocal-lattice directions in common. Thus, one
needs ð3þ dÞ< 3N reciprocal-basis vectors for integer indexing
of diffraction patterns that show Bragg reflections at positions
given by the Fourier module M�. The CSs discovered to date have
at least one lattice direction in common and consist of a
maximum number of N ¼ 3 substructures. They can be divided in
three main classes: channel structures, columnar packings and
layer packings (see van Smaalen, 1992, 1995).

In the following, the approach of Janner & Janssen (1980b) and
van Smaalen (1992, 1995, and references therein) for the
description of CSs is used. The set of diffraction vectors of a CS,
i.e. its Fourier module M� ¼ f

P3þd
i¼1 hia

�
i g, can be split into the

contributions of the � subsystems by employing 3� ð3þ dÞ
matrices Zik� with integer coefficients a�i� ¼

P3þd
k¼1Zik�a

�
k,

i ¼ 1; . . . ; 3. In the general case, each subsystem will be modu-
lated with the periods of the others due to their mutual inter-
actions. Thus, in general, CSs consist of several intergrown
incommensurately modulated substructures. The satellite vectors
qj�; j ¼ 1; . . . ; d, referred to the �th subsystem can be obtained
from M� by applying the d� ð3þ dÞ integer matrices Vjk�:
qj� ¼

P3þd
k¼1Vjk�a

�
k, j ¼ 1; . . . ; d. The matrices consisting of

the components �� of the satellite vectors qj� with regard to
the reciprocal sublattices ��� can be calculated by
�� ¼ ðV3� þ Vd��ÞðZ3� þ Zd��Þ

�1, where the subscript 3 refers to
the 3� 3 submatrix of physical space and the subscript d to the
d� d matrix of the internal space. The juxtaposition of the
3� ð3þ dÞ matrix Z� and the d� ð3þ dÞ matrix V� defines the
non-singular ð3þ dÞ � ð3þ dÞ matrix W�,

W� ¼
Z�

V�

� �
:

This matrix allows the reinterpretation of the Fourier module M�

as the Fourier module M�� ¼ M�W� of a d-dimensionally modu-
lated subsystem �. It also describes the coordinate transformation
between the superspace basis � and ��.

The superspace description is obtained analogously to that for
IMSs (see Section 4.6.3.1) by considering the 3D Fourier module
M� of rank 3þ d as the projection of a ð3þ dÞD reciprocal lattice
�� upon the physical space. Thus, one obtains for the definition

602

Fig. 4.6.3.3. Schematic diffraction patterns for 3D IMSs with (a) 1D harmonic
and (b) rectangular density modulation. The modulation direction is parallel
to a2. In (a) only first-order satellites exist; in (b), all odd-order satellites can
be present. In (c), the diffraction pattern of a harmonic displacive
modulation along a1 with amplitudes parallel to a�2 is depicted. Several
reflections are indexed. The areas of the circles are proportional to the
reflection intensities.

Fig. 4.6.3.4. The relative structure-factor magnitudes of mth-order satellite
reflections for a harmonic displacive modulation are proportional to the
values of the mth-order Bessel function JmðxÞ.
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