Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 4.6, p. 603   | 1 | 2 |

Section Diffraction symmetry

W. Steurera* and T. Haibacha

aLaboratory of Crystallography, Department of Materials, ETH Hönggerberg, HCI G 511, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
Correspondence e-mail: Diffraction symmetry

| top | pdf |

The symmetry of CSs can be described with basically the same formalism as used for IMSs. This is a consequence of the formally equivalent applicability of the higher-dimensional approach, in particular of the superspace-group theory developed for IMSs [see Janner & Janssen (1980a[link],b[link]); van Smaalen (1991[link], 1992[link]); Yamamoto (1992a[link])].


Janner, A. & Janssen, T. (1980a). Symmetry of incommensurate crystal phases. I. Commensurate basic structures. Acta Cryst. A36, 399–408.
Janner, A. & Janssen, T. (1980b). Symmetry of incommensurate crystal phases. II. Incommensurate basic structures. Acta Cryst. A36, 408–415.
Smaalen, S. van (1991). Symmetry of composite crystals. Phys. Rev. B, 43, 11330–11341.
Smaalen, S. van (1992). Superspace description of incommensurate intergrowth compounds and the application to inorganic misfit layer compounds. Mater. Sci. Forum, 100 & 101, 173–222.
Yamamoto, A. (1992a). Unified setting and symbols of superspace groups for composite crystals. Acta Cryst. A48, 476–483.

to end of page
to top of page