Tables for
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 4.6, pp. 604-605   | 1 | 2 |

Section Structure factor

W. Steurera* and T. Haibacha

aLaboratory of Crystallography, Department of Materials, ETH Hönggerberg, HCI G 511, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
Correspondence e-mail: Structure factor

| top | pdf |

The structure factor of a periodic structure is defined as the Fourier transform of the density distribution [\rho({\bf r})] of its unit cell (UC): [F({\bf H}) = {\textstyle\int\limits_{\rm UC}} \rho({\bf r}) \exp(2\pi i{\bf H}\cdot {\bf r})\,\hbox{d}{\bf r}.]The same is valid in the case of the nD description of a quasiperiodic structure. The parallel- and perpendicular-space components are orthogonal to each other and can be separated. In the case of the 1D Fibonacci sequence, the Fourier transform of the parallel-space component of the electron-density distribution of a single atom gives the usual atomic scattering factor [f({\bf H}^{\parallel})]. Parallel to [x^{\perp}], [\rho({\bf r})] adopts values [\neq 0] only within the interval [- (1 + \tau)/] [[2a^{*}(2 + \tau)] \leq {x}^{\perp} \leq (1 + \tau)/[2a^{*}(2 + \tau)]] and one obtains [\eqalign{ F({\bf H}) &= f({\bf H}^{\parallel})[a^{*} (2 + \tau)]/(1 + \tau) \cr&\quad\times\textstyle\int\limits_{-(1 + \tau)/[2a^{*} (2 + \tau)]}^{+(1 + \tau)/[2a^{*} (2 + \tau)]} \exp(2\pi i{\bf H}^{\perp} \cdot x^{\perp})\,\hbox{d}x^{\perp}.}]The factor [[a^{*}(2 + \tau)]/(1 + \tau)] results from the normalization of the structure factors to [F({\bf 0}) = f(0)]. With [\eqalign{{\bf H} &= h_{1}{\bf d}_{1}^{*} + h_{2}{\bf d}_{2}^{*} + h_{3}{\bf d}_{3}^{*} + h_{4}{\bf d}_{4}^{*}\cr &= h_{1}a_{1}^{*} \pmatrix{1\cr -\tau\cr 0\cr 0\cr} + h_{2}a_{1}^{*} \pmatrix{\tau\cr 1\cr 0\cr 0\cr} + h_{3}a_{3}^{*} \pmatrix{0\cr 0\cr 1\cr 0\cr} + h_{4}a_{4}^{*} \pmatrix{0\cr 0\cr 0\cr 1\cr}}]and [{\bf H}^{\perp} = a_{1}^{*} (-\tau h_{1} + h_{2})] the integrand can be rewritten as [\eqalign{ F({\bf H}) &= f({\bf H}^{\parallel}) [a^{*}(2 + \tau)]/(1 + \tau)\cr&\quad\times \textstyle{\int\limits_{- (1 + \tau)/[2a^{*}(2 + \tau)]}^{+ (1 + \tau)/[2a^{*}(2 + \tau)]}} \exp [2\pi i (- \tau h_{1} + h_{2}) x^{\perp}] \,\hbox{d}x^{\perp},}]yielding [\eqalign{F({\bf H}) &= f({\bf H}^{\parallel}) (2 + \tau)/[2\pi i (-\tau h_{1} + h_{2})(1 + \tau)]\cr&\quad \times\exp [2\pi i(- \tau h_{1} + h_{2}) x^{\perp}] \big|_{- (1 + \tau)/[2a^{*}(2 + \tau)]}^{+ (1 + \tau)/[2a^{*}(2 + \tau)]}.\cr}]Using [\sin x = (\hbox{e}^{ix} - \hbox{e}^{- ix})/2i] gives [\eqalign{F({\bf H}) &= f({\bf H}^{\parallel}) (2 + \tau)/[\pi(- \tau h_{1} + h_{2})(1 + \tau)] \cr&\quad\times\sin[\pi (1 + \tau)(- \tau h_{1} + h_{2})]/(2 + \tau).}]Thus, the structure factor has the form of the function [\sin (x)/x] with x a perpendicular reciprocal-space coordinate. The upper and lower limiting curves of this function are given by the hyperbolae [\pm 1/x] (Fig.[link]. The continuous shape of [F({\bf H})] as a function of [{\bf H}^{\perp}] allows the estimation of an overall temperature factor and atomic scattering factor for reflection-data normalization (compare Figs.[link] and[link]).


Figure | top | pdf |

The structure factors [F({\bf H})] of the Fibonacci chain decorated with aluminium atoms (Uoverall = 0.005 Å2) as a function of the parallel (above) and the perpendicular (below) component of the diffraction vector. The short distance is [\hbox{S} = 2.5\;\hbox{\AA}], all structure factors within [0 \leq |{\bf H}| \leq 2.5\;\hbox{\AA}^{-1}] have been calculated and normalized to [F(00) = 1].

In the case of a 3D crystal structure which is quasiperiodic in one direction, the structure factor can be written in the form [F({\bf H}) = {\textstyle\sum\limits_{k = 1}^{n}} \left[T_{k}({\bf H})f_{k}({\bf H}^{\parallel})g_{k}({\bf H}^{\perp}) \exp (2\pi i {\bf H} \cdot {\bf r}_{k})\right].]The sum runs over all n averaged hyperatoms in the 4D unit cell of the structure. The geometric form factor [g_{k}({\bf H}^{\perp})] corresponds to the Fourier transform of the kth atomic surface, [g_{k} ({\bf H}^{\perp}) = (1/A_{\rm UC}^{\perp}) {\textstyle\int\limits_{A_{k}}} \exp (2\pi i {\bf H}^{\perp} \cdot {\bf r}^{\perp})\ \hbox{d}{\bf r}^{\perp},]normalized to [A_{\rm UC}^{\perp}], the area of the 2D unit cell projected upon [{\bf V}^{\perp}], and [A_{k}], the area of the kth atomic surface.

The atomic temperature factor [T_{k}({\bf H})] can also have perpendicular-space components. Assuming only harmonic (static or dynamic) displacements in parallel and perpendicular space one obtains, in analogy to the usual expression (Willis & Pryor, 1975[link]), [\eqalign{T_{k}({\bf H}) &= T_{k}({\bf H}^{\parallel},{\bf H}^{\perp})\cr& = \exp (-2\pi^{2}{\bf H}^{\| T} \langle {\bf u}_{i}^{\parallel} {\bf u}_{j}^{\| T}\rangle {\bf H}^{\parallel}) \exp (-2\pi^{2}{\bf H}^{\perp T} \langle {\bf u}_{i}^{\perp} {\bf u}_{j}^{\perp T}\rangle {\bf H}^{\perp}),\cr}]with [\displaylines{ \langle {\bf u}_{i}^{\parallel} {\bf u}_{j}^{\| T}\rangle = \pmatrix{\langle {\bf u}_{1}^{\parallel 2}\rangle &\langle {\bf u}_{1}^{\parallel} \cdot {\bf u}_{2}^{\| T}\rangle &\langle {\bf u}_{1}^{\parallel} \cdot {\bf u}_{3}^{\| T}\rangle\cr \langle {\bf u}_{2}^{\parallel} \cdot {\bf u}_{1}^{\| T}\rangle &\langle {\bf u}_{2}^{\parallel 2}\rangle &\langle {\bf u}_{2}^{\parallel} \cdot {\bf u}_{3}^{\| T}\rangle\cr \langle {\bf u}_{3}^{\parallel} \cdot {\bf u}_{1}^{\| T}\rangle &\langle {\bf u}_{3}^{\parallel} \cdot {\bf u}_{2}^{\| T}\rangle &\langle {\bf u}_{3}^{\parallel 2}\rangle\cr}\cr\cr \hbox{ and } \langle {\bf u}_{i}^{\perp} {\bf u}_{j}^{\perp T}\rangle = \langle {\bf u}_{4}^{\perp}\rangle.}]The elements of the type [\langle {\bf u}_{i} \cdot {\bf u}_{j}^{T}\rangle] represent the average values of the atomic displacements along the ith axis times the displacement along the jth axis on the V basis.


Willis, B. T. M. & Pryor, A. W. (1975). Thermal Vibrations in Crystallography. Cambridge University Press.

to end of page
to top of page