International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2010). Vol. B, ch. 5.1, pp. 626-646   | 1 | 2 |
https://doi.org/10.1107/97809553602060000779

Chapter 5.1. Dynamical theory of X-ray diffraction

A. Authiera*

aInstitut de Minéralogie et de la Physique des Milieux Condensés, Bâtiment 7, 140 rue de Lourmel, 75015 Paris, France
Correspondence e-mail: AAuthier@wanadoo.fr

References

Adams, B. W. (2004). Time-dependent Takagi–Taupin eikonal theory of X-ray diffraction in rapidly changing crystal structures. Acta Cryst. A60, 120–133.
Authier, A. (1960). Mise en évidence expérimentale de la double réfraction des rayons X. C. R. Acad. Sci. Paris, 251, 2003–2005.
Authier, A. (1961). Etude de la transmission anomale des rayons X dans des cristaux de silicium. Bull. Soc. Fr. Minér. Cristallogr. 84, 51–89.
Authier, A. (1970). Ewald waves in theory and experiment. Adv. Struct. Res. Diffr. Methods, 3, 1–51.
Authier, A. (1986). Angular dependence of the absorption induced nodal plane shifts of X-ray stationary waves. Acta Cryst. A42, 414–426.
Authier, A. (1989). X-ray standing waves. J. Phys. (Paris), 50, C7–215, C7–224.
Authier, A. (2005). Dynamical Theory of X-ray Diffraction. (First printed 2001, revised 2003, 2005.) IUCr Monographs on Crystallography. Oxford University Press.
Authier, A. (2008). A note on Bragg-case Pendellösung and dispersion surface. Acta Cryst. A64, 337–340.
Authier, A. & Balibar, F. (1970). Création de nouveaux champs d'onde généralisés dus à la présence d'un objet diffractant. II. Cas d'un défaut isolé. Acta Cryst. A26, 647–654.
Authier, A., Lagomarsino, S. & Tanner, B. K. (1996). Editors. X-ray and Neutron Dynamical Diffraction: Theory and Applications. NATO ASI Series, Series B: Physics, Vol. 357. New York, London: Plenum Press.
Authier, A. & Malgrange, C. (1998). Diffraction physics. Acta Cryst. A54, 806–819.
Batterman, B. W. (1964). Effect of dynamical diffraction in X-ray fluorescence scattering. Phys. Rev. A, 133, 759–764.
Batterman, B. W. (1969). Detection of foreign atom sites by their X-ray fluorescence scattering. Phys. Rev. Lett. 22, 703–705.
Batterman, B. W. & Bilderback, D. H. (1991). X-ray monochromators and mirrors. In Handbook on Synchrotron Radiation, Vol. 3, edited by G. Brown & D. E. Moncton, pp. 105–153. Amsterdam: Elsevier Science Publishers BV.
Batterman, B. W. & Cole, H. (1964). Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681–717.
Batterman, B. W. & Hildebrandt, G. (1967). Observation of X-ray Pendellösung fringes in Darwin reflection. Phys. Status Solidi, 23, K147–K149.
Batterman, B. W. & Hildebrandt, G. (1968). X-ray Pendellösung fringes in Darwin reflection. Acta Cryst. A24, 150–157.
Bedzyk, M. J. (1988). New trends in X-ray standing waves. Nucl. Instrum. Methods A, 266, 679–683.
Bonse, U. & Teworte, R. (1980). Measurement of X-ray scattering factors of Si from the fine structure of Laue case rocking curves. J. Appl. Cryst. 13, 410–416.
Born, M. & Wolf, E. (1983). Principles of Optics, 6th ed. Oxford: Pergamon Press.
Borrmann, G. (1936). Über die Interferenzen aus Gitterquellen bei Anregung durch Röntgenstrahlen. Ann. Phys. (Leipzig), 27, 669–693.
Borrmann, G. (1941). Über Extinktionsdiagramme der Röntgenstrahlen von Quarz. Phys. Z. 42, 157–162.
Borrmann, G. (1950). Die Absorption von Röntgenstrahlen in Fall der Interferenz. Z. Phys. 127, 297–323.
Borrmann, G. (1954). Der kleinste Absorption Koeffizient interfierender Röntgenstrahlung. Z. Kristallogr. 106, 109–121.
Borrmann, G. (1955). Vierfachbrechung der Röntgenstrahlen durch das ideale Kistallgitter. Naturwissenschaften, 42, 67–68.
Borrmann, G. (1959). Röntgenwellenfelder. Beit. Phys. Chem. 20 Jahrhunderts, pp. 262–282. Braunschweig: Vieweg und Sohn.
Bragg, W. L. (1913). The diffraction of short electromagnetic waves by a crystal. Proc. Cambridge Philos. Soc. 17, 43–57.
Bragg, W. L., Darwin, C. G. & James, R. W. (1926). The intensity of reflection of X-rays by crystals. Philos. Mag. 1, 897–922.
Brümmer, O. & Stephanik, H. (1976). Dynamische Interferenztheorie. Leipzig: Akademische Verlagsgesellshaft.
Chang, S.-L. (1987). Solution to the X-ray phase problem using multiple diffraction – a review. Crystallogr. Rev. 1, 87–189.
Chang, S.-L. (2004). X-ray Multiple-Wave Diffraction: Theory and Application. Springer Series in Solid-State Sciences, Vol. 143. Berlin: Springer-Verlag.
Chang, S.-L., Stetsko, Yu. P. & Lee, Y.-R. (2002). Quantitative determination of phase for macromolecular crystals using multiple diffraction methods and dynamical theory. Z. Kristallogr. 217, 662–667.
Chukhovskii, F. N. & Förster, E. (1995). Time-dependent X-ray Bragg diffraction. Acta Cryst. A51, 668–672.
Cowan, P. L., Brennan, S., Jach, T., Bedzyk, M. J. & Materlik, G. (1986). Observations of the diffraction of evanescent X-rays at a crystal surface. Phys. Rev. Lett. 57, 2399–2402.
Darwin, C. G. (1914a). The theory of X-ray reflection. Philos. Mag. 27, 315–333.
Darwin, C. G. (1914b). The theory of X-ray reflection. Part II. Philos. Mag. 27, 675–690.
Darwin, C. G. (1922). The reflection of X-rays from imperfect crystals. Philos. Mag. 43, 800–829.
Ewald, P. P. (1917). Zur Begründung der Kristalloptik. III. Röntgenstrahlen. Ann. Phys. (Leipzig), 54, 519–597.
Ewald, P. P. (1958). Group velocity and phase velocity in X-ray crystal optics. Acta Cryst. 11, 888–891.
Fewster, P. F. (1993). X-ray diffraction from low-dimensional structures. Semicond. Sci. Technol. 8, 1915–1934.
Fingerland, A. (1971). Some properties of the single crystal rocking curve in the Bragg case. Acta Cryst. A27, 280–284.
Golovchenko, J. A., Patel, J. R., Kaplan, D. R., Cowan, P. L. & Bedzyk, M. J. (1982). Solution to the surface registration problem using X-ray standing waves. Phys. Rev. Lett. 49, 560–563.
Graeff, W. (2002a). Short X-ray pulses in a Laue-case crystal. J. Synchrotron Rad. 9, 82–85.
Graeff, W. (2002b). Time dependence of the polarization of short X-ray pulses after crystal reflection. J. Synchrotron Rad. 9, 293–297.
Graeff, W. (2004). Tailoring the time response of a Bragg reflection to short X-ray pulses. J. Synchrotron Rad. 11, 261–265.
Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.
Hirsch, P. B. & Ramachandran, G. N. (1950). Intensity of X-ray reflection from perfect and mosaic absorbing crystals. Acta Cryst. 3, 187–194.
Hümmer, K. & Weckert, E. (1995). Enantiomorphism and three-beam X-ray diffraction: determination of the absolute structure. Acta Cryst. A51, 431–438.
International Tables for Crystallography (2004). Vol. C. Mathematical, Physical and Chemical Tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.
James, R. W. (1950). The Optical Principles of the Diffraction of X-rays. London: G. Bell and Sons Ltd.
James, R. W. (1963). The dynamical theory of X-ray diffraction. Solid State Phys. 15, 53.
Kato, N. (1952). Dynamical theory of electron diffraction for a finite polyhedral crystal. J. Phys. Soc. Jpn, 7, 397–414.
Kato, N. (1955). Integrated intensities of the diffracted and transmitted X-rays due to ideally perfect crystal. J. Phys. Soc. Jpn, 10, 46–55.
Kato, N. (1958). The flow of X-rays and material waves in an ideally perfect single crystal. Acta Cryst. 11, 885–887.
Kato, N. (1960). The energy flow of X-rays in an ideally perfect crystal: comparison between theory and experiments. Acta Cryst. 13, 349–356.
Kato, N. (1961a). A theoretical study of Pendellösung fringes. Part I. General considerations. Acta Cryst. 14, 526–532.
Kato, N. (1961b). A theoretical study of Pendellösung fringes. Part 2. Detailed discussion based upon a spherical wave theory. Acta Cryst. 14, 627–636.
Kato, N. (1963). Pendellösung fringes in distorted crystals. I. Fermat's principle for Bloch waves. J. Phys. Soc. Jpn, 18, 1785–1791.
Kato, N. (1964a). Pendellösung fringes in distorted crystals. II. Application to two-beam cases. J. Phys. Soc. Jpn, 19, 67–77.
Kato, N. (1964b). Pendellösung fringes in distorted crystals. III. Application to homogeneously bent crystals. J. Phys. Soc. Jpn, 19, 971–985.
Kato, N. (1968a). Spherical-wave theory of dynamical X-ray diffraction for absorbing perfect crystals. I. The crystal wave fields. J. Appl. Phys. 39, 2225–2230.
Kato, N. (1968b). Spherical-wave theory of dynamical X-ray diffraction for absorbing perfect crystals. II. Integrated reflection power. J. Appl. Phys. 39, 2231–2237.
Kato, N. (1974). X-ray diffraction. In X-ray Diffraction, edited by L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson & R. A. Young, pp. 176–438. New York: McGraw-Hill.
Kato, N. & Lang, A. R. (1959). A study of Pendellösung fringes in X-ray diffraction. Acta Cryst. 12, 787–794.
Kikuta, S. (1971). Determination of structure factors of X-rays using half-widths of the Bragg diffraction curves from perfect single crystals. Phys. Status Solidi B, 45, 333–341.
Kikuta, S. & Kohra, K. (1970). X-ray collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. I. General considerations on collimators. J. Phys. Soc. Jpn, 29, 1322–1328.
Kovalchuk, M. V. & Kohn, V. G. (1986). X-ray standing waves – a new method of studying the structure of crystals. Sov. Phys. Usp. 29, 426–446.
Lagomarsino, S. (1996). X-ray standing wave studies of bulk crystals, thin films and interfaces. In X-ray and Neutron Dynamical Diffraction: Theory and Applications. NATO ASI Series, Series B: Physics, Vol. 357, edited by A. Authier, S. Lagomarsino & B. K. Tanner, pp. 225–234. New York, London: Plenum Press.
Laue, M. von (1931). Die dynamische Theorie der Röntgenstrahl interferenzen in neuer Form. Ergeb. Exakten Naturwiss. 10, 133–158.
Laue, M. von (1937). Helligkeitswechsel längs Kossellinien. Ann. Phys. 28, 528–532.
Laue, M. von (1952). Die Energie Strömung bei Röntgenstrahl interferenzen Kristallen. Acta Cryst. 5, 619–625.
Laue, M. von (1960). Röntgenstrahl-Interferenzen. Frankfurt am Main: Akademische Verlagsgesellschaft.
Lefeld-Sosnowska, M. & Malgrange, C. (1968). Observation of oscillations in rocking curves of the Laue reflected and refracted beams from thin Si single crystals. Phys. Status Solidi, 30, K23–K25.
Lefeld-Sosnowska, M. & Malgrange, C. (1969). Experimental evidence of plane-wave rocking curve oscillations. Phys. Status Solidi, 34, 635–647.
Ludewig, J. (1969). Debye–Waller factor and anomalous absorption (Ge; 293–5 K). Acta Cryst. A25, 116–118.
Malgrange, C. & Graeff, W. (2003). Diffraction of short X-ray pulses in the general asymmetric Laue case – an analytic treatment. J. Synchrotron Rad. 10, 248–254.
Materlik, G. & Zegenhagen, J. (1984). X-ray standing wave analysis with synchrotron radiation applied for surface and bulk systems. Phys. Lett. A, 104, 47–50.
Mo, F., Mathiesen, R. H., Alzari, P. M., Lescar, J. & Rasmussen, B. (2002). Physical estimation of triplet phases from two new proteins. Acta Cryst. D58, 1780–1786.
Ohtsuki, Y. H. (1964). Temperature dependence of X-ray absorption by crystals. I. Photo-electric absorption. J. Phys. Soc. Jpn, 19, 2285–2292.
Ohtsuki, Y. H. (1965). Temperature dependence of X-ray absorption by crystals. II. Direct phonon absorption. J. Phys. Soc. Jpn, 20, 374–380.
Patel, J. R. (1996). X-ray standing waves. In X-ray and Neutron Dynamical Diffraction: Theory and Applications. NATO ASI Series, Series B: Physics, Vol. 357, edited by A. Authier, S. Lagomarsino & B. K. Tanner, pp. 211–224. New York, London: Plenum Press.
Patel, J. R. & Fontes, E. (1996). X-ray standing waves: thermal vibration amplitudes at surfaces. In X-ray and Neutron Dynamical Diffraction: Theory and Applications. NATO ASI Series, Series B: Physics, Vol. 357, edited by A. Authier, S. Lagomarsino & B. K. Tanner, pp. 235–248. New York, London: Plenum Press.
Penning, P. & Polder, D. (1961). Anomalous transmission of X-rays in elastically deformed crystals. Philips Res. Rep. 16, 419–440.
Pinsker, Z. G. (1978). Dynamical scattering of X-rays in crystals. Springer Series in Solid-State Sciences. Berlin: Springer-Verlag.
Prins, J. A. (1930). Die Reflexion von Röntgenstrahlen an absorbierenden idealen Kristallen. Z. Phys. 63, 477–493.
Renninger, M. (1955). Messungen zur Röntgenstrahl-Optik des Ideal­kristalls. I. Bestätigung der Darwin–Ewald–Prins–Kohler-Kurve. Acta Cryst. 8, 597–606.
Saka, T., Katagawa, T. & Kato, N. (1973). The theory of X-ray crystal diffraction for finite polyhedral crystals. III. The Bragg–(Bragg)m cases. Acta Cryst. A29, 192–200.
Shastri, S. D., Zambianchi, P. & Mills, D. M. (2001). Dynamical diffraction of ultrashort X-ray free-electron laser pulses. J. Synchrotron Rad. 8, 1131–1135.
Shen, Q. & Wang, J. (2003). Recursive direct phasing with reference-beam diffraction. Acta Cryst. D59, 809–814.
Sondhauss, P. & Wark, J. S. (2003). Extension of the time-dependent dynamical diffraction theory to `optical phonon'-type distortions: application to diffraction from coherent acoustic and optical phonons. Acta Cryst. A59, 7–13.
Takagi, S. (1962). Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Cryst. 15, 1311–1312.
Takagi, S. (1969). A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn, 26, 1239–1253.
Tanner, B. K. (1976). X-ray Diffraction Topography. Oxford: Pergamon Press.
Tanner, B. K. (1990). High resolution X-ray diffraction and topography for crystal characterization. J. Cryst. Growth, 99, 1315–1323.
Tanner, B. K. & Bowen, D. K. (1992). Synchrotron X-radiation topography. Mater. Sci. Rep. 8, 369–407.
Uragami, T. (1969). Pendellösung fringes of X-rays in Bragg case. J. Phys. Soc. Jpn, 27, 147–154.
Uragami, T. (1970). Pendellösung fringes in a crystal of finite thickness. J. Phys. Soc. Jpn, 28, 1508–1527.
Vartanyants, I. A. & Koval'chuk, M. V. (2001). Theory and applications of X-ray standing waves in real crystals. Rep. Prog. Phys. 64, 1009–1084.
Vartanyants, I. A. & Zegenhagen, J. (1999). Photoelectric scattering from an X-ray interference field. Solid State Commun. 113, 299–320.
Wagner, E. H. (1959). Group velocity and energy (or particle) flow density of waves in a periodic medium. Acta Cryst. 12, 345–346.
Weckert, E. & Hümmer, K. (1997). Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A53, 108–143.
Weckert, E., Müller, R., Zellner, J., Zegers, I. & Loris, R. (2002). Physical measurement of triplet invariants: present state of the experiment, data evaluation and future perspectives. Z. Kristallogr. 217, 651–661.
Yamazaki, H. & Ishikawa, T. (2002). Propagation of X-ray coherence for diffraction of perfect crystals. J. Appl. Cryst. 35, 314–318.
Yamazaki, H. & Ishikawa, T. (2004). Analysis of the mutual coherence function of X-rays using dynamical diffraction. J. Appl. Cryst. 37, 48–51.
Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals. New York: John Wiley.
Zegenhagen, J. (1993). Surface structure determination with X-ray standing waves. Surf. Sci. Rep. 18, 199–271.
Zegenhagen, J., Lyman, P. F., Böhringer, M. & Bedzyk, M. J. (1997). Discommensurate reconstructions of (111)Si and Ge induced by surface alloying with Cu, Ga and In. Phys. Status Solidi B, 204, 587–616.