Tables for
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 10.2, p. 962

Section Enclosed installations

D. C. Creagha and S. Martinez-Carrerab

aDivision of Health, Design, and Science, University of Canberra, Canberra, ACT 2601, Australia, and bSan Ernesto, 6-Esc. 3, 28002 Madrid, Spain Enclosed installations

| top | pdf |

Most modern equipment is produced in such a form as to meet the prevailing radiation-protection regulations of the country in which it is sold, and care must be taken that safety circuits provided by the manufacturer are not defeated by staff members undertaking setting-up procedures. Such safety devices might cause visual or audible signals to be given and turn off power to the irradiating device.

Many early X-ray generators, electron microscopes, etc. have by modern standards inadequate radiation-protection facilities. Where practicable, therefore, special enclosures should be fabricated to house the apparatus producing the ionizing radiation. These should be designed such that:

  • (i) no person should have access to the interior during irradiation;

  • (ii) access should be prevented during irradiation by the provision of fail-safe interlocks that turn off the irradiating source;

  • (iii) no person should be able to remain in an enclosure during irradiation;

  • (iv) a means of rapid exit should be available to an individual should by chance he (she) be within a enclosure when irradiation commences;

  • (v) the source can be turned off from within the enclosure;

  • (vi) during operation the dose equivalent at any accessible surface outside the enclosure shall not exceed 25 mSv (2.5 rem) per hour;

  • (vii) when not in use, sealed sources should be capable of being housed, by remote control, within suitable shielding inside the enclosure;

  • (viii) all interlocks should be fail-safe enabling isolation of the source in the event of the loss of electrical power.

to end of page
to top of page