Tables for
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 2.3, pp. 42-79

Chapter 2.3. Powder and related techniques: X-ray techniques

W. Parrisha and J. I. Langfordb

aIBM Almaden Research Center, San Jose, CA, USA, and bSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England


Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). Correction for preferred orientation in Rietveld refinement. J. Appl. Cryst. 22, 261–268.Google Scholar
Alexander, L. E. (1969). X-ray diffraction methods in polymer science. New York: John Wiley. [Reprint 1979; Huntington, New York: Krieger.]Google Scholar
Anderson, C. A. F., Zolensky, M. E., Smith, D. K., Freeborn, W. P. & Scheetz, B. E. (1981). Applications of Gandolfi X-ray diffraction to the characterization of reaction products from the alteration of simulated nuclear wastes. Adv. X-ray Anal. 24, 265–269.Google Scholar
Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., Helliwell, J. R. & Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Cryst. B44, 73–77.Google Scholar
Arai, T., Shoji, T. & Omote, K. (1986). Measurement of the spectral distribution emitted from X-ray spectrographic tubes. Adv. X-ray Anal. 29, 413–422.Google Scholar
Ateiner, J., Termonia, Y. & Deltour, J. (1974). Comments on smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 44, 1906–1909.Google Scholar
Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). Synchrotron X-ray and neutron powder diffraction studies of the structure of α-CrPO4. J. Appl. Cryst. 21, 452–457.Google Scholar
Australian Journal of Physics (1988). X-ray powder diffractometry. Aust. J. Phys. 41(2), 101–335.Google Scholar
Azároff, L. V. & Buerger, M. J. (1958). The powder method in X-ray crystallography. New York: McGraw-Hill.Google Scholar
Bachmann, R., Kohler, H., Schultz, H. & Weber, H.-P. (1985). Structure investigation of a 6 µm CaF2 crystal with synchrotron radiation. Acta Cryst. A41, 35–40.Google Scholar
Baker, T. W., George, J. D., Bellamy, B. A. & Causer, R. (1968). Fully automated high-precision X-ray diffraction. Adv. X-ray Anal. 11, 359–375.Google Scholar
Barraud, J. (1949). Monochromateur-focalisateur logarithmique: application à l'étude de la texture et des déformations des cristaux. C. R. Acad. Sci. 229, 378–380.Google Scholar
Barrett, C. S. & Massalski, T. B. (1980). Structure of metals, 3rd revised ed. New York: McGraw-Hill.Google Scholar
Bearden, J. A. (1964). X-ray wavelengths. US Atomic Energy Commission, Div. Techn. Inf. Ext., Oak Ridge, TN, USA; (1967) Rev. Mod. Phys. 39, 78–124; (1974) International tables for X-ray crystallography, Vol. IV, pp. 6–43.Google Scholar
Bearden, J. A. & Burr, A. F. (1965). Atomic energy levels. US Atomic Energy Commission, Div. Techn. Inf. Ext., Oak Ridge, TN, USA.Google Scholar
Beaumont, J. H. & Hart, M. (1974). Multiple Bragg reflection monochromators for synchrotron radiation. J. Phys. E, 7, 823–829.Google Scholar
Benedetti, A., Fagherazzi, A., Enzo, S. & Battagliarin, M. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. II. Application and discussion of the methodology. J. Appl. Cryst. 21, 543–549.Google Scholar
Birks, L. S., Seebold, R. E., Grant, B. K. & Grosso, J. S. (1965). X-ray yield and line/background ratios for electron excitation. J. Appl. Phys. 36, 699–702.Google Scholar
Bish, D. L. & Post, J. E. (1989). Editors. Modern powder diffraction. Reviews in Mineralogy, Vol. 20. Washington: Mineralogical Society of America.Google Scholar
Bish, D. L. & Reynolds, R. C. (1989). Sample preparation for X-ray diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 4. Washington: Mineralogical Society of America.Google Scholar
Bleeksma, J., Kloos, G. & DiGiovanni, H. J. (1948). X-ray spectrometer with Geiger counter for measuring powder diffraction patterns. Philips Tech. Rev. 10, 1–12.Google Scholar
Block, S. & Hubbard, C. R. (1980). Editors. Accuracy in powder diffraction. US Natl Bur. Stand. Spec. Publ. No. 567.Google Scholar
Bohlin, H. (1920). Eine neue Anordnung für röntgenkristallographische Untersuchungen von Kristallpulver. Ann. Phys. (Leipzig), 61, 421–439.Google Scholar
Bojarski, Z. & Bołd, T. (1979). Editors. Conference on applied crystallography, 2 Vols. Silesian University, Katowice, Poland.Google Scholar
Bonse, U. & Hart, M. (1965). An X-ray interferometer. Appl. Phys. Lett. 6, 155–156.Google Scholar
Bonse, U. & Hart, M. (1966). Small angle X-ray scattering by spherical particles of polystyrene and polyvinyltoluene. Z. Phys. 189, 151–162.Google Scholar
Borg, I. Y. & Smith, D. K. (1969). Calculated X-ray powder patterns for silicate minerals. Geol. Soc. Am. Mem. 122.Google Scholar
Bragg, W. H. (1921). Application of the ionization chamber to the determination of the structure of minute crystals. Proc. Phys. Soc. 33, 222–224.Google Scholar
Brentano, J. C. M. (1946). Parafocusing properties of microcrystalline powder layers in X-ray diffraction applied to the design of X-ray goniometers. J. Appl. Phys. 17, 420–434.Google Scholar
Brown, D. B. & Ogilvie, R. E. (1964). Efficiency of production of characteristic X radiation from pure elements bombarded with electrons. J. Appl. Phys. 35, 309–314.Google Scholar
Buerger, M. J. (1945). The design of X-ray powder cameras. J. Appl. Phys. 16, 501–510.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods, 3, 223–226.Google Scholar
Calvert, L. D., Sirianni, A. F., Gainsford, G. J. & Hubbard, C. R. (1983). A comparison of methods for reducing preferred orientation. Adv. X-ray Anal. 26, 105–110.Google Scholar
Cernik, R. J., Cheetham, A. K., Prout, C. K., Watkin, D. J., Wilkinson, A. P. & Willis, B. T. M. (1991). The structure of cimetidine (C10H16N6S) solved from synchrotron-radiation X-ray powder diffraction data. J. Appl. Cryst. 24, 222–226.Google Scholar
Cheetham, G. M. T., Harding, M. M., Mingos, D. M. P. & Powell, H. R. (1993). Synthesis and microcrystal structure determination of [Au10(PPh3)7{S2C2(CN)2}2]. J. Chem. Soc. Chem. Commun. pp. 1000–1001.Google Scholar
Cline, J. P. & Snyder, R. L. (1983). The dramatic effect of crystallite size on X-ray intensities. Adv. X-ray Anal. 26, 111–117.Google Scholar
Compton, A. H. & Allison, S. K. (1935). X-rays in theory and experiment. New York: D. van Nostrand Co.Google Scholar
Cox, D. E., Hastings, J. B., Thomlinson, W. & Prewitt, C. T. (1983). Applications of synchrotron radiation to high resolution powder diffraction and Rietveld refinement. Nucl. Instrum. Methods, 208, 573–578.Google Scholar
Cox, D. E., Toby, B. H. & Eddy, M. M. (1988). Acquisition of powder diffraction data with synchrotron radiation. Aust. J. Phys. 41, 117–131.Google Scholar
Cullity, B. D. (1978). Elements of X-ray diffraction, 2nd ed. Reading, Massachusetts: Addison-Wesley.Google Scholar
David, W. I. F. (1986). Powder diffraction peak shapes. Parameterization of the pseudo-Voigt as a Voigt function. J. Appl. Cryst. 19, 63–64.Google Scholar
Davis, B. L. & Smith, D. K. (1988). Tables of experimental reference intensity ratios. Powder Diffr. 3, 205–208.Google Scholar
Debye, P. & Scherrer, P. (1916). Interferenzen an regellos orientierten Teilchen in Röntgenlicht. Phys. Z. 17, 277–283.Google Scholar
Deutsch, M. (1980). The asymmetrically cut Bonse–Hart X-ray diffractometer. 1. Design principles and performance. J. Appl. Cryst. 13, 252–255.Google Scholar
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.Google Scholar
DuMond, J. W. M. & Kirkpatrick, H. (1930). The multiple crystal X-ray spectrograph. Rev. Sci. Instrum. 1, 88–105.Google Scholar
Dyson, N. A. (1973). X-rays in atomic and nuclear physics. London: Longman.Google Scholar
Edwards, H. J. & Langford, J. I. (1971). A comparison between the variances of the Cu Kα and Fe Kα spectral distributions. J. Appl. Cryst. 4, 43–50.Google Scholar
Edwards, T. H. & Willson, P. D. (1974). Digital least squares smoothing of spectra. Appl. Spectrosc. 28, 541–545.Google Scholar
Enzo, S., Fagherazzi, G., Benedetti, A. & Polizzi, S. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. J. Appl. Cryst. 21, 536–542.Google Scholar
Evans, R. C., Hirsch, P. B. & Kellar, J. N. (1948). A `parallel-beam' concentrating monochromator for X-rays. Acta Cryst. 1, 124–129.Google Scholar
Fankuchen, I. (1937). Condensing monochromator for X-rays. Nature (London), 139, 193–194.Google Scholar
Fawcett, T. G., Crowder, C. E., Brownell, S. J., Zhang, Y., Hubbard, C., Schreiner, W., Hamill, G. P., Huang, T. C., Sabino, E., Langford, J. I., Hamilton, R. & Louër, D. (1988). Establishing an instrument peak profile calibration standard for powder diffraction analyses: international round robin conducted by the JCPDS-ICDD and the US National Bureau of Standards. Powder Diffr. 3, 209–218.Google Scholar
Feder, R. & Berry, B. S. (1970). Seeman–Bohlin X-ray diffractometer for thin films. J. Appl. Cryst. 3, 372–379.Google Scholar
Finger, L. W. (1989). Synchrotron powder diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 10. Washington: Mineralogical Society of America.Google Scholar
Gandolfi, G. (1967). Discussion upon methods to obtain X-ray `powder patterns' from a single crystal. Mineral. Petrogr. Acta, 13, 67–74.Google Scholar
Giessen, B. C. & Gordon, G. E. (1968). X-ray diffraction: a new high-speed technique based on X-ray spectrography. Science, 159, 973–975.Google Scholar
Göbel, H. E. (1982). A Guinier diffractometer with a scanning position sensitive detector. Adv. X-ray Anal. 25, 315–324.Google Scholar
Goldsmith, C. C. & Walker, G. A. (1984). Small area X-ray diffraction techniques; applications of the microdiffractometer to phase identification and strain determination. Adv. X-ray Anal. 27, 229–238.Google Scholar
Green, M. (1964). The angular distribution of characteristic X radiation and its origin within a solid target. Proc. Phys. Soc. 83, 435–451.Google Scholar
Guinier, A. (1937). Arrangement for obtaining intense diffraction diagrams of crystalline powders with monochromatic radiation. C. R. Acad. Sci. 204, 1115–1116.Google Scholar
Guinier, A. (1946). Sur les monochromateurs à cristal courbé. C. R. Acad. Sci. 223, 31–32.Google Scholar
Guinier, A. (1956). Théorie et technique de la radiocristallographie. Paris: Dunod.Google Scholar
Guinier, A. (1963). X-ray diffraction. San Francisco: Freeman.Google Scholar
Guinier, A. & Dexter, D. L. (1963). X-ray studies of materials. New York: Interscience.Google Scholar
Guinier, A. & Sébilleau, F. (1952). Montague achromatique pour la détermination du profile des raies des rayons X. C. R. Acad. Sci. 235, 888–890.Google Scholar
Hall, M. M. Jr, Veeraraghavan, V. G., Rubin, H. & Winchell, P. G. (1977). The approximation of symmetric X-ray peaks by Pearson type VII distributions. J. Appl. Cryst. 10, 66–68.Google Scholar
Hanawalt, J. D. & Rinn, H. W. (1936). Identification of crystalline materials. Classification and use of X-ray diffraction patterns. Ind. Eng. Chem. Anal. Ed. 8, 244–247.Google Scholar
Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512.Google Scholar
Harding, M. M. (1988). The use of synchrotron radiation for Laue diffraction and for the study of very small crystals. Chemical crystallography with pulsed neutrons and synchrotron X-rays, edited by M. A. Carrondo & G. A. Jeffrey, pp. 537–561. NATO Advanced Study Institute Series C, Vol. 221. Dordrecht: Kluwer Academic Publishers.Google Scholar
Harding, M. M. & Kariuki, B. M. (1994). Microcrystal structure determination of AlPO4-CHA using synchrotron radiation. Acta Cryst. C50, 852–854.Google Scholar
Harding, M. M., Kariuki, B. M., Cernik, R. J. & Cressey, G. (1994). The structure of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Cryst. B50, 673–676.Google Scholar
Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.Google Scholar
Hart, M., Cernik, R. J., Parrish, W. & Toraya, H. (1990). Lattice parameter determination for powders using synchrotron radiation. J. Appl. Cryst. 23, 286–291.Google Scholar
Hart, M., Parrish, W. & Masciocchi, N. (1987). Studies of texture in thin films using synchrotron radiation and energy dispersive diffraction. Appl. Phys. Lett. 50, 897–899.Google Scholar
Hart, M., Rodrigues, A. R. D. & Siddons, D. P. (1984). Adjustable resolution Bragg reflection systems. Acta Cryst. A40, 502–507.Google Scholar
Hastings, J. B., Thomlinson, W. & Cox, D. E. (1984). Synchrotron X-ray powder diffraction. J. Appl. Cryst. 17, 85–89.Google Scholar
Hepp, A. & Baerlocher, Ch. (1988). Learned peak shape functions for powder diffraction data. Austr. J. Phys. 41, 229–236.Google Scholar
Hill, R. J. & Madsen, I. C. (1984). The effect of profile step counting time on the determination of crystal structure parameters by X-ray Rietveld analysis. J. Appl. Cryst. 17, 297–306.Google Scholar
Hofmann, E. G. & Jagodzinski, H. (1955). Eine neue, hochauflösende Röntgenfeinstruktur-Anlage mit verbessertem, fokussierendem Monochromator und Feinfokusröhe. Z. Metallkd. 46, 601–609.Google Scholar
Howard, S. A. & Preston, K. D. (1989). Profile fitting of powder diffraction patterns. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 8. Washington: Mineralogical Society of America.Google Scholar
Howard, S. A. & Snyder, R. L. (1983). An evaluation of some profile models and the optimization procedures used in profile fitting. Adv. X-ray Anal. 26, 73–80.Google Scholar
Huang, T. C. (1988). Precision peak determination in X-ray powder diffraction. Aust. J. Phys. 41, 201–212.Google Scholar
Huang, T. C., Hart, M., Parrish, W. & Masciocchi, N. (1987). Line-broadening analysis of synchrotron X-ray diffraction data. J. Appl. Phys. 61, 2813–2816.Google Scholar
Huang, T. C. & Parrish, W. (1984). A combined derivative method for peak search analysis. Adv. X-ray Anal. 27, 45–52.Google Scholar
Hull, A. W. (1917). A new method of X-ray crystal analysis. Phys. Rev. 10, 661–696.Google Scholar
Hull, A. W. (1919). A new method of chemical analysis. J. Am. Chem. Soc. 41, 1168–1175.Google Scholar
Järvinen, M. (1993). Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Cryst. 26, 525–531.Google Scholar
Järvinen, M., Merisalo, M., Pesonen, A. & Inkinen, O. (1970). Correction of integrated X-ray intensities for preferred orientation in cubic powders. J. Appl. Cryst. 3, 313–318.Google Scholar
Jenkins, R. (1989a). Instrumentation. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 2. Washington: Mineralogical Society of America.Google Scholar
Jenkins, R. (1989b). Experimental procedures, edited by D. L. Bish & J. E. Post, Chap. 3. Washington: Mineralogical Society of America.Google Scholar
Jenkins, R., Fawcett, T. G., Smith, D. K., Visser, J. W., Morris, M. C. & Frevel, L. K. (1986). International Centre for Diffraction Data. Sample preparation methods in X-ray powder diffraction. Powder Diffr. 1, 51–63.Google Scholar
Jenkins, R. & Paolini, F. R. (1974). An automatic divergence slit for the powder diffractometer. Norelco Rep. 21, 9–14.Google Scholar
Jenkins, R. & Schreiner, W. N. (1986). Considerations in the design of goniometers for use in X-ray powder diffractometers. Powder Diffr. 1, 305–319.Google Scholar
Jenkins, R. & Snyder, R. L. (1996). Introduction to X-ray powder diffractometry. New York: Wiley.Google Scholar
Johann, H. H. (1931). Die Ergeugung lichstarker Röntgenspektren mit Hilfe von Konkavkristallen. Z. Phys. 69, 185–206.Google Scholar
Johansson, T. (1933). Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z. Phys. 82, 507–528.Google Scholar
Kaplow, R. & Averbach, B. L. (1963). X-ray diffractometer for the study of liquid structures. Rev. Sci. Instrum. 34, 579–581.Google Scholar
Keijser, Th. H. de, Langford, J. I., Mittemeijer, E. J. & Vogels, A. B. P. (1982). Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Cryst. 15, 308–314.Google Scholar
Kevex Corporation (1990). Brochure describing equipment.Google Scholar
King, H. W., Gillham, C. J. & Huggins, F. G. (1970). A versatile Bragg–Brentano/Seemann–Bohlin powder diffractometer. Adv. X-ray Anal. 13, 550–577.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. New York: John Wiley.Google Scholar
Kunze, G. (1964a). Korrekturen höherer Ordnung für die mit Bragg–Brentano und Seemann–Bohlin Systemen gewonenen Messgrössen unter Berücksichtigung der Primärstrahldivergenz. Z. Angew. Phys. 17, 412–421.Google Scholar
Kunze, G. (1964b). Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenz-linien bei Bragg–Brentano und Seemann–Bohlin Diffraktometern. I. Z. Angew. Phys. 17, 522–534.Google Scholar
Kunze, G. (1964c). Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenz-linien bei Bragg–Brentano und Seemann–Bohlin Diffraktometern. II. Z. Angew. Phys. 18, 28–37.Google Scholar
Ladell, J. (1961). Interpretation of diffractometer line profiles distortion due to the diffraction process. Acta Cryst. 14, 47–53.Google Scholar
Ladell, J. & Parrish, W. (1959). Determination of spectral contamination of X-ray tubes. Philips Res. Rep. 14, 401–420.Google Scholar
Ladell, J., Parrish, W. & Taylor, J. (1959). Interpretation of diffractometer line profiles. Acta Cryst. 12, 561–567.Google Scholar
Ladell, J., Zagofsky, A. & Pearlman, S. (1975). Cu Kα2 elimination algorithm. J. Appl. Cryst. 8, 499–506.Google Scholar
Lang, A. R. (1956). Diffracted-beam monochromatization techniques in X-ray diffractometry. Rev. Sci. Instrum. 27, 17–25.Google Scholar
Langford, J. I. (1978). A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst. 11, 10–14.Google Scholar
Langford, J. I. (1982). The variance as a measure of line broadening: corrections for truncation, curvature and instrument effects. J. Appl. Cryst. 15, 315–322.Google Scholar
Langford, J. I. (1987). Some applications of pattern fitting to powder diffraction data. Prog. Cryst. Growth Charact. 14, 185–211.Google Scholar
Langford, J. I. (1992). The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition. Accuracy in Powder Diffraction II, edited by E. Prince & J. K. Stalick, pp. 110–127. NIST Spec. Publ. No. 846. Gaithersburg, MA: US Department of Commerce.Google Scholar
Langford, J. I., Delhez, R., de Keijser, Th. H. & Mittemeijer, E. J. (1988). Profile analysis for microcrystalline properties by the Fourier and other methods. Aust. J. Phys. 41, 173–187.Google Scholar
Langford, J. I. & Wilson, A. J. C. (1962). Counter diffractometer: the effect of specimen transparency on the intensity, position and breadth of X-ray powder diffraction lines. J. Sci. Instrum. 39, 581–585.Google Scholar
LeGalley, D. P. (1935). A type of Geiger–Müller counter suitable for the measurement of diffracted Mo K X-rays. Rev. Sci. Instrum. 6, 279–283.Google Scholar
Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; the structures of Al2Y4O9 and I2O4. J. Appl. Cryst. 20, 123–129.Google Scholar
Lim, G., Parrish, W., Ortiz, C., Bellotto, M. & Hart, M. (1987). Grazing incidence synchrotron X-ray diffraction method for analyzing thin films. J. Mater. Res. 2, 471–477.Google Scholar
Lindemann, R. & Trost, A. (1940). Das Interferenz-Zählrohr als Hilfsmittel der Feinstrukturforschung mit Röntgenstrahlen. Z. Phys. 115, 456–468.Google Scholar
Lipson, H. & Steeple, H. (1970). Interpretation of X-ray powder diffraction patterns. London: Macmillan.Google Scholar
Louër, D. & Langford, J. I. (1988). Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J. Appl. Cryst. 21, 430–437.Google Scholar
McCusker, L. (1988). The ab initio structure determination of Sigma-2 (a new clathrasil phase) from synchrotron powder diffraction data. J. Appl. Cryst. 21, 305–310.Google Scholar
Mack, M. & Parrish, W. (1967). Seemann–Bohlin X-ray diffractometry. II. Comparison of aberrations and intensity with conventional diffractometer. Acta Cryst. 23, 693–700.Google Scholar
Mack, M., Parrish, W. & Taylor, J. (1964). Methods of determining centroid X-ray wavelengths: Cu Kα and Fe Kα. J. Appl. Phys. 35, 118–127.Google Scholar
McMahon, M. I. & Nelmes, R. J. (1993). New high-pressure phase of Si. Phys. Rev. B, 47, 8337–8340.Google Scholar
Malmros, G. & Werner, P. E. (1973). Automatic densitometer measurement of powder diffraction photographs. Acta Chem. Scand. 27, 493–502.Google Scholar
Morris, R. E., Harrison, W. T. A., Nicol, J. M., Wilkinson, A. P. & Cheetham, A. K. (1992). Determination of complex structures by combined neutron and synchrotron X-ray powder diffraction. Nature (London), 359, 519–522.Google Scholar
Mortier, W. J. & Constenoble, M. L. (1973). The separation of overlapping peaks in X-ray powder patterns with the use of an experimental profile. J. Appl. Cryst. 6, 488–490.Google Scholar
Newsam, J. M., King, H. E. Jr & Liang, K. S. (1989). X-ray diffraction using synchrotron radiation – a catalysis perspective. Adv. X-ray Anal. 32, 9–20.Google Scholar
Ogilvie, R. E. (1963). Parafocusing diffractometry. Rev. Sci. Instrum. 34, 1344–1347.Google Scholar
Parratt, L. G. (1936). Kα satellite lines. Phys. Rev. 50, 1–15.Google Scholar
Parrish, W. (1949). X-ray powder diffraction analysis: film and Geiger counter techniques. Science, 110, 368–371.Google Scholar
Parrish, W. (1955). Elimination of the second image in double-coated film. Norelco Rep. 2, 67.Google Scholar
Parrish, W. (1958). Advances in X-ray diffractometry of clay minerals. Seventh Natl Conf. Clays and Clay Minerals, pp. 230–259. New York: Pergamon.Google Scholar
Parrish, W. (1965). X-ray analysis papers. Eindhoven: Centrex.Google Scholar
Parrish, W. (1967). Improved method of measuring X-ray tube focus. Rev. Sci. Instrum. 12, 1779–1782.Google Scholar
Parrish, W. (1968). X-ray diffractometry methods for complex powder patterns. X-ray and electron methods of analysis, edited by H. van Alphen & W. Parrish, pp. 1–35. New York: Plenum.Google Scholar
Parrish, W. (1974). Role of diffractometer geometry in the standardization of polycrystalline data. Adv. X-ray Anal. 17, 97–105.Google Scholar
Parrish, W. (1983). History of the X-ray powder method in the USA. Crystallography in North America, edited by D. M. McLachlan Jr & J. P. Glusker, pp. 201–214. American Crystallographic Association.Google Scholar
Parrish, W. (1988). Advances in synchrotron X-ray polycrystalline diffraction. Aust. J. Phys. 41, 101–112.Google Scholar
Parrish, W. & Cisney, E. (1948). An improved X-ray diffraction camera. Philips Tech. Rev. 10, 157–167.Google Scholar
Parrish, W., Hamacher, E. A. & Lowitzsch, K. (1954). The `Norelco' X-ray diffractometer. Philips Tech. Rev. 16, 123–133.Google Scholar
Parrish, W. & Hart, M. (1985). Synchrotron experimental methods for powder structure refinement. Trans. Am. Crystallogr. Assoc. 21, 51–55.Google Scholar
Parrish, W. & Hart, M. (1987). Advantages of synchrotron radiation for polycrystalline diffractometry. Z. Kristallogr. 179, 161–173.Google Scholar
Parrish, W., Hart, M. & Huang, T. C. (1986). Synchrotron X-ray polycrystalline diffractometry. J. Appl. Cryst. 19, 92–100.Google Scholar
Parrish, W. & Huang, T. C. (1980). Accuracy of the profile fitting method for X-ray polycrystalline diffractometry. US Natl Bur. Stand. Spec. Publ. No. 457, pp. 95–110.Google Scholar
Parrish, W. & Huang, T. C. (1983). Accuracy and precision in X-ray polycrystalline diffraction. Adv. X-ray Anal. 26, 35–44.Google Scholar
Parrish, W., Huang, T. C. & Ayers, G. L. (1976). Profile fitting: a powerful method of computer X-ray instrumentation and analysis. Trans. Am. Crystallogr. Assoc. 12, 55–73.Google Scholar
Parrish, W., Huang, T. C. & Ayers, G. L. (1984). Computer simulation of powder patterns. Adv. X-ray Anal. 27, 75–80.Google Scholar
Parrish, W. & Lowitzsch, K. (1959). Geometry, alignment and angular calibration of X-ray diffractometers. Am. Mineral. 44, 564–583.Google Scholar
Parrish, W., Lowitzsch, K. & Spielberg, N. (1958). Fluorescent sources for X-ray diffractometry. Acta Cryst. 11, 400–405.Google Scholar
Parrish, W. & Mack, M. (1967). Seemann–Bohlin X-ray diffractometry. I. Instrumentation. Acta Cryst. 23, 687–692.Google Scholar
Parrish, W., Mack, M. & Taylor, J. (1963). Kα satellite interference in X-ray diffractometer line profiles. J. Appl. Phys. 34, 2544–2548.Google Scholar
Parrish, W., Mack, M. & Taylor, J. (1966). Determination of apertures in the focusing plane of X-ray powder diffractometers. J. Sci. Instrum. 43, 623–628.Google Scholar
Parrish, W., Mack, M. & Vajda, I. (1967). Seemann–Bohlin linkage for Norelco diffractometer. Norelco Rep. 14, 56–59.Google Scholar
Parrish, W. & Vajda, I. (1966). Ray-proof slit mount for X-ray powder diffractometers. Rev. Sci. Instrum. 37, 1607–1608.Google Scholar
Parrish, W. & Vajda, I. (1971). X-ray camera having a semicylindrical film holder and means to simultaneously rotate a specimen about two mutually perpendicular axes. US patent No. 3 626 185, 7 December 1971.Google Scholar
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.Google Scholar
Peiser, H. S., Rooksby, H. P. & Wilson, A. J. C. (1955). Editors. X-ray diffraction by polycrystalline materials. London: The Institute of Physics.Google Scholar
Phillips, W. C. (1985). X-ray sources. Methods Enzymol. 114, 300–316.Google Scholar
Pike, E. R. & Ladell, J. (1961). The Lorentz factor in powder diffraction. Acta Cryst. 14, 53–54.Google Scholar
Piltz, R. O., McMahon, M. I., Crain, J., Hatton, P. D., Nelmes, R. J., Cernik, R. J. & Bushnell-Wye, G. (1992). An imaging plate system for high-pressure powder diffraction: the data processing side. Rev. Sci. Instrum. 63, 700–702.Google Scholar
Prince, E. & Stalick, J. K. (1992). Accuracy in Powder Diffraction II, NIST Spec. Publ. No. 846. Gaithersburg, MA: US Department of Commerce.Google Scholar
Pyrros, N. P. & Hubbard, C. R. (1983). Rational functions as profile models in powder diffraction. J. Appl. Cryst. 16, 289–294.Google Scholar
Rachinger, W. A. (1948). A correction for the α1α2 doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum. 25, 254–255.Google Scholar
Read, M. H. & Hensler, D. H. (1972). X-ray analysis of sputtered films of beta-tantalum and body-centered cubic titanium. Thin Solid Films, 10, 123–135.Google Scholar
Rendle, D. F. (1983). A simple Gandolfi attachment for a Debye–Scherrer camera and its use in a forensic science laboratory. J. Appl. Cryst. 16, 428–429.Google Scholar
Renninger, M. (1956). Absolutvergleich der Stärksten Röntgenstrahl-Reflexe verschiedener Kristalle. Z. Kristallogr. 107, 464–470.Google Scholar
Reynolds, R. C. (1989). Principles of powder diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 1. Washington: Mineralogical Society of America.Google Scholar
Rietveld, H. M. (1969). A profile-refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.Google Scholar
Rigaku Corporation (1990). Brochure describing equipment.Google Scholar
Ross, P. A. (1928). A new method of spectroscopy for faint X-radiations. J. Opt. Soc. Am. 16, 433–438.Google Scholar
Savitzky, A. & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639.Google Scholar
Schwartz, L. S. & Cohen, J. B. (1987). Diffraction from materials, 2nd ed. New York: Springer-Verlag.Google Scholar
Seemann, H. (1919). Eine fokussierende röntgenspektroskopische Anordnung für Kristallpulver. Ann. Phys. (Leipzig), 55, 455–464.Google Scholar
Segmüller, A. (1957). Die Bestimmung von Glanzwinkeln, Linienbreiten und Intensitäten der Röntgen-interferenzen mit einem Geiger–Zählrohr-goniometer nach dem Seemann–Bohlin-prinzip. Z. Metallkd. 48, 448–454.Google Scholar
Shishiguchi, S., Minato, I. & Hashizume, H. (1986). Rapid collection of X-ray powder data for pattern analysis by a cylindrical position-sensitive detector. J. Appl. Cryst. 19, 420–426.Google Scholar
Smith, D. G. W., Reed, S. J. B. & Ware, N. G. (1974). Kβ/Kα intensity ratios for elements of atomic number 20 to 30. X-ray Spectrosc. 3, 149–150.Google Scholar
Smith, D. K. (1989). Computer analysis of diffraction data. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 7. Washington: Mineralogical Society of America.Google Scholar
Smith, D. K. & Barrett, C. S. (1979). Special handling problems in X-ray diffractometry. Adv. X-ray Anal. 22, 1–12Google Scholar
Smith, D. K., Nichols, M. C. & Zolensky, M. E. (1983). POWD10 – a FORTRAN IV program for calculating X-ray powder diffraction patterns – version 10. The Pennsylvania State University, University Park, PA, USA.Google Scholar
Smith, G. S. & Snyder, R. L. (1979). FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J. Appl. Cryst. 12, 60–65.Google Scholar
Smith, S. T., Snyder, R. L. & Brownell, W. E. (1979). Minimization of preferred orientation in powders by spray drying. Adv. X-ray Anal. 22, 77–88.Google Scholar
Soller, W. (1924). A new precision X-ray spectrometer. Phys. Rev. 24, 158–167.Google Scholar
Sonneveld, E. J. & Visser, J. W. (1975). Automatic collection of powder data from photographs. J. Appl. Cryst. 8, 1–7.Google Scholar
Steinmeyer, P. A. (1986). Special applications of the Debye microdiffractometer. Adv. X-ray Anal. 29, 251–256.Google Scholar
Straumanis, M. E. (1959). Absorption correction in precision determination of lattice parameters. J. Appl. Phys. 30, 1965–1969.Google Scholar
Suortti, P., Ahtee, M. & Unonius, L. (1979). Voigt function fit of X-ray and neutron powder diffraction profiles. J. Appl. Cryst. 12, 365–369.Google Scholar
Sussieck-Fornefeld, C. & Schmetzer, K. (1987). A modified Gandolfi camera with improved adjustment facilities. Powder Diffr. 2, 82–83.Google Scholar
Tao, K. & Hewett, C. A. (1987). Thin film X-ray analysis using the Read camera: a refinement of the technique. Rev. Sci. Instrum. 58, 212–214.Google Scholar
Taupin, D. (1973). Automatic peak determination in X-ray powder patterns. J. Appl. Cryst. 6, 266–273.Google Scholar
Taylor, A. (1961). X-ray metallography. New York: John Wiley.Google Scholar
Taylor, J., Mack, M. & Parrish, W. (1964). Evaluation of truncation methods for accurate centroid lattice parameter determination. Acta Cryst. 17, 1229–1245.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.Google Scholar
Toraya, H. (1986). Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffractometer data. J. Appl. Cryst. 19, 440–447.Google Scholar
Toraya, H. (1988). The deconvolution of overlapping reflections by the procedure of direct fitting. J. Appl. Cryst. 21, 192–196.Google Scholar
Toraya, H. (1989). The determination of direction-dependent crystallite size and strain by X-ray whole-powder-pattern fitting. Powder Diffr. 4, 130–136.Google Scholar
Toraya, H., Yoshimura, M. & Somiya, S. (1983). A computer program for the deconvolution of X-ray diffraction profiles with the composite of Pearson type VII functions. J. Appl. Cryst. 16, 653–657.Google Scholar
Tournarie, M. (1958). Méthode général de correction des effets instrumentaux appliquée à l'interprétation des diagrammes de rayons X. Bull. Soc. Fr. Minéral. Cristallogr. 81, 278–286.Google Scholar
Vineyard, G. H. (1982). Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B, 26, 4146–4159.Google Scholar
Wagner, C. N. J. (1969). Diffraction analysis of liquid and amorphous alloys. Adv. X-ray Anal. 12, 50–71.Google Scholar
Warren, B. E. (1969). X-ray diffraction. Reading, MA. Addison-Wesley.Google Scholar
Wassermann, G. & Wiewiorosky, J. (1953). Uber ein Geiger-Zahlrohr-goniometer nach dem Seeman–Bohlin prinzip. Z. Metallkd. 44, 567–570.Google Scholar
Wertheim, G., Butler, M., West, K. & Buchanan, D. (1974). Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369–1371.Google Scholar
Will, G. (1979). POWLS: a powder least-squares program. J. Appl. Cryst. 12, 483–485.Google Scholar
Will, G., Bellotto, M., Parrish, W. & Hart, M. (1988). Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J. Appl. Cryst. 21, 182–191.Google Scholar
Will, G., Masciocchi, N., Hart, M. & Parrish, W. (1987). Ytterbium LIII-edge anomalous scattering measured with synchrotron radiation powder diffraction. Acta Cryst. A43, 677–683.Google Scholar
Will, G., Masciocchi, N., Parrish, W. & Hart, M. (1987). Refinement of simple crystal structures from synchrotron radiation powder diffraction data. J. Appl. Cryst. 20, 394–401.Google Scholar
Will, G., Masciocchi, N., Parrish, W. & Lutz, H. D. (1990). Crystal structure and cation distribution of MnCrInS4 from synchrotron powder diffraction data. Z. Kristallogr. 190, 277–285.Google Scholar
Wilson, A. J. C. (1963). Mathematical theory of X-ray powder diffractometry. Eindhoven: Philips Technical Library.Google Scholar
Wilson, A. J. C. (1965). The location of peaks. Br. J. Appl. Phys. 16, 665–674.Google Scholar
Wilson, A. J. C. (1974). Powder diffractometry. X-ray diffraction, edited by L. V. Azároff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson & R. A. Young, Chap. 6. New York: McGraw-Hill.Google Scholar
Wilson, A. J. C. (1980). Relationship between `observed' and `true' intensity: effect of various counting modes. Acta Cryst. A36, 929–936.Google Scholar
Wölfel, E. R. (1981). A new method for quantitative X-ray analysis of multiphase mixtures. J. Appl. Cryst. 14, 291–296.Google Scholar
Wolff, P. M. de (1948). Multiple Guinier cameras. Acta Cryst. 1, 207–211.Google Scholar
Wolff, P. M. de (1957). Self-centering combined aperture- and scatter-slit for powder diffractometry with constant effective specimen area. Appl. Sci. Res. B, 6, 296–300.Google Scholar
Wolff, P. M. de (1968a). A simplified criterion for the reliability of a powder pattern indexing. J. Appl. Cryst. 1, 108–113.Google Scholar
Wolff, P. M. de (1968b). Focusing monochromators and transmission techniques. Norelco Rep. 15, 44–49.Google Scholar
Wolff, P. M. de, Taylor, J. & Parrish, W. (1959). Experimental study of effect of crystallite size statistics on X-ray diffractometer intensities. J. Appl. Phys. 30, 63–69.Google Scholar
Wolff, P. M. de & Visser, J. W. (1988). Absolute intensities – outline of a recommended practice. Powder Diffr. 3, 202–204.Google Scholar
Yoshimatsu, M. & Kozaki, S. (1977). High brilliance X-ray sources. Topics in applied physics, Vol. 22, X-ray optics, edited by H.-J. Queisser, pp. 9–33. Berlin: Springer-Verlag.Google Scholar
Young, R. A. (1963). Balanced filters for X-ray diffractometry. Z. Kristallogr. 118, 233–247.Google Scholar
Young, R. A., Prince, E. & Sparks, R. A. (1982). Suggested guidelines for the publication of Rietveld analyses and pattern decomposition studies. J. Appl. Cryst. 15, 357–359.Google Scholar
Young, R. A. & Wiles, D. B. (1982). Profile shape functions in Rietveld refinements. J. Appl. Cryst. 15, 430–438.Google Scholar
Yvon, K., Jeitschko, W. & Parthé, E. (1977). LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73–74.Google Scholar