International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 2.3, pp. 42-79
https://doi.org/10.1107/97809553602060000578

Chapter 2.3. Powder and related techniques: X-ray techniques

W. Parrisha and J. I. Langfordb

aIBM Almaden Research Center, San Jose, CA, USA, and bSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England

References

Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). Correction for preferred orientation in Rietveld refinement. J. Appl. Cryst. 22, 261–268.
Alexander, L. E. (1969). X-ray diffraction methods in polymer science. New York: John Wiley. [Reprint 1979; Huntington, New York: Krieger.]
Anderson, C. A. F., Zolensky, M. E., Smith, D. K., Freeborn, W. P. & Scheetz, B. E. (1981). Applications of Gandolfi X-ray diffraction to the characterization of reaction products from the alteration of simulated nuclear wastes. Adv. X-ray Anal. 24, 265–269.
Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., Helliwell, J. R. & Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Cryst. B44, 73–77.
Arai, T., Shoji, T. & Omote, K. (1986). Measurement of the spectral distribution emitted from X-ray spectrographic tubes. Adv. X-ray Anal. 29, 413–422.
Ateiner, J., Termonia, Y. & Deltour, J. (1974). Comments on smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 44, 1906–1909.
Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). Synchrotron X-ray and neutron powder diffraction studies of the structure of α-CrPO4. J. Appl. Cryst. 21, 452–457.
Australian Journal of Physics (1988). X-ray powder diffractometry. Aust. J. Phys. 41(2), 101–335.
Azároff, L. V. & Buerger, M. J. (1958). The powder method in X-ray crystallography. New York: McGraw-Hill.
Bachmann, R., Kohler, H., Schultz, H. & Weber, H.-P. (1985). Structure investigation of a 6 µm CaF2 crystal with synchrotron radiation. Acta Cryst. A41, 35–40.
Baker, T. W., George, J. D., Bellamy, B. A. & Causer, R. (1968). Fully automated high-precision X-ray diffraction. Adv. X-ray Anal. 11, 359–375.
Barraud, J. (1949). Monochromateur-focalisateur logarithmique: application à l'étude de la texture et des déformations des cristaux. C. R. Acad. Sci. 229, 378–380.
Barrett, C. S. & Massalski, T. B. (1980). Structure of metals, 3rd revised ed. New York: McGraw-Hill.
Bearden, J. A. (1964). X-ray wavelengths. US Atomic Energy Commission, Div. Techn. Inf. Ext., Oak Ridge, TN, USA; (1967) Rev. Mod. Phys. 39, 78–124; (1974) International tables for X-ray crystallography, Vol. IV, pp. 6–43.
Bearden, J. A. & Burr, A. F. (1965). Atomic energy levels. US Atomic Energy Commission, Div. Techn. Inf. Ext., Oak Ridge, TN, USA.
Beaumont, J. H. & Hart, M. (1974). Multiple Bragg reflection monochromators for synchrotron radiation. J. Phys. E, 7, 823–829.
Benedetti, A., Fagherazzi, A., Enzo, S. & Battagliarin, M. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. II. Application and discussion of the methodology. J. Appl. Cryst. 21, 543–549.
Birks, L. S., Seebold, R. E., Grant, B. K. & Grosso, J. S. (1965). X-ray yield and line/background ratios for electron excitation. J. Appl. Phys. 36, 699–702.
Bish, D. L. & Post, J. E. (1989). Editors. Modern powder diffraction. Reviews in Mineralogy, Vol. 20. Washington: Mineralogical Society of America.
Bish, D. L. & Reynolds, R. C. (1989). Sample preparation for X-ray diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 4. Washington: Mineralogical Society of America.
Bleeksma, J., Kloos, G. & DiGiovanni, H. J. (1948). X-ray spectrometer with Geiger counter for measuring powder diffraction patterns. Philips Tech. Rev. 10, 1–12.
Block, S. & Hubbard, C. R. (1980). Editors. Accuracy in powder diffraction. US Natl Bur. Stand. Spec. Publ. No. 567.
Bohlin, H. (1920). Eine neue Anordnung für röntgenkristallographische Untersuchungen von Kristallpulver. Ann. Phys. (Leipzig), 61, 421–439.
Bojarski, Z. & Bołd, T. (1979). Editors. Conference on applied crystallography, 2 Vols. Silesian University, Katowice, Poland.
Bonse, U. & Hart, M. (1965). An X-ray interferometer. Appl. Phys. Lett. 6, 155–156.
Bonse, U. & Hart, M. (1966). Small angle X-ray scattering by spherical particles of polystyrene and polyvinyltoluene. Z. Phys. 189, 151–162.
Borg, I. Y. & Smith, D. K. (1969). Calculated X-ray powder patterns for silicate minerals. Geol. Soc. Am. Mem. 122.
Bragg, W. H. (1921). Application of the ionization chamber to the determination of the structure of minute crystals. Proc. Phys. Soc. 33, 222–224.
Brentano, J. C. M. (1946). Parafocusing properties of microcrystalline powder layers in X-ray diffraction applied to the design of X-ray goniometers. J. Appl. Phys. 17, 420–434.
Brown, D. B. & Ogilvie, R. E. (1964). Efficiency of production of characteristic X radiation from pure elements bombarded with electrons. J. Appl. Phys. 35, 309–314.
Buerger, M. J. (1945). The design of X-ray powder cameras. J. Appl. Phys. 16, 501–510.
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Methods, 3, 223–226.
Calvert, L. D., Sirianni, A. F., Gainsford, G. J. & Hubbard, C. R. (1983). A comparison of methods for reducing preferred orientation. Adv. X-ray Anal. 26, 105–110.
Cernik, R. J., Cheetham, A. K., Prout, C. K., Watkin, D. J., Wilkinson, A. P. & Willis, B. T. M. (1991). The structure of cimetidine (C10H16N6S) solved from synchrotron-radiation X-ray powder diffraction data. J. Appl. Cryst. 24, 222–226.
Cheetham, G. M. T., Harding, M. M., Mingos, D. M. P. & Powell, H. R. (1993). Synthesis and microcrystal structure determination of [Au10(PPh3)7{S2C2(CN)2}2]. J. Chem. Soc. Chem. Commun. pp. 1000–1001.
Cline, J. P. & Snyder, R. L. (1983). The dramatic effect of crystallite size on X-ray intensities. Adv. X-ray Anal. 26, 111–117.
Compton, A. H. & Allison, S. K. (1935). X-rays in theory and experiment. New York: D. van Nostrand Co.
Cox, D. E., Hastings, J. B., Thomlinson, W. & Prewitt, C. T. (1983). Applications of synchrotron radiation to high resolution powder diffraction and Rietveld refinement. Nucl. Instrum. Methods, 208, 573–578.
Cox, D. E., Toby, B. H. & Eddy, M. M. (1988). Acquisition of powder diffraction data with synchrotron radiation. Aust. J. Phys. 41, 117–131.
Cullity, B. D. (1978). Elements of X-ray diffraction, 2nd ed. Reading, Massachusetts: Addison-Wesley.
David, W. I. F. (1986). Powder diffraction peak shapes. Parameterization of the pseudo-Voigt as a Voigt function. J. Appl. Cryst. 19, 63–64.
Davis, B. L. & Smith, D. K. (1988). Tables of experimental reference intensity ratios. Powder Diffr. 3, 205–208.
Debye, P. & Scherrer, P. (1916). Interferenzen an regellos orientierten Teilchen in Röntgenlicht. Phys. Z. 17, 277–283.
Deutsch, M. (1980). The asymmetrically cut Bonse–Hart X-ray diffractometer. 1. Design principles and performance. J. Appl. Cryst. 13, 252–255.
Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272.
DuMond, J. W. M. & Kirkpatrick, H. (1930). The multiple crystal X-ray spectrograph. Rev. Sci. Instrum. 1, 88–105.
Dyson, N. A. (1973). X-rays in atomic and nuclear physics. London: Longman.
Edwards, H. J. & Langford, J. I. (1971). A comparison between the variances of the Cu Kα and Fe Kα spectral distributions. J. Appl. Cryst. 4, 43–50.
Edwards, T. H. & Willson, P. D. (1974). Digital least squares smoothing of spectra. Appl. Spectrosc. 28, 541–545.
Enzo, S., Fagherazzi, G., Benedetti, A. & Polizzi, S. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. J. Appl. Cryst. 21, 536–542.
Evans, R. C., Hirsch, P. B. & Kellar, J. N. (1948). A `parallel-beam' concentrating monochromator for X-rays. Acta Cryst. 1, 124–129.
Fankuchen, I. (1937). Condensing monochromator for X-rays. Nature (London), 139, 193–194.
Fawcett, T. G., Crowder, C. E., Brownell, S. J., Zhang, Y., Hubbard, C., Schreiner, W., Hamill, G. P., Huang, T. C., Sabino, E., Langford, J. I., Hamilton, R. & Louër, D. (1988). Establishing an instrument peak profile calibration standard for powder diffraction analyses: international round robin conducted by the JCPDS-ICDD and the US National Bureau of Standards. Powder Diffr. 3, 209–218.
Feder, R. & Berry, B. S. (1970). Seeman–Bohlin X-ray diffractometer for thin films. J. Appl. Cryst. 3, 372–379.
Finger, L. W. (1989). Synchrotron powder diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 10. Washington: Mineralogical Society of America.
Gandolfi, G. (1967). Discussion upon methods to obtain X-ray `powder patterns' from a single crystal. Mineral. Petrogr. Acta, 13, 67–74.
Giessen, B. C. & Gordon, G. E. (1968). X-ray diffraction: a new high-speed technique based on X-ray spectrography. Science, 159, 973–975.
Göbel, H. E. (1982). A Guinier diffractometer with a scanning position sensitive detector. Adv. X-ray Anal. 25, 315–324.
Goldsmith, C. C. & Walker, G. A. (1984). Small area X-ray diffraction techniques; applications of the microdiffractometer to phase identification and strain determination. Adv. X-ray Anal. 27, 229–238.
Green, M. (1964). The angular distribution of characteristic X radiation and its origin within a solid target. Proc. Phys. Soc. 83, 435–451.
Guinier, A. (1937). Arrangement for obtaining intense diffraction diagrams of crystalline powders with monochromatic radiation. C. R. Acad. Sci. 204, 1115–1116.
Guinier, A. (1946). Sur les monochromateurs à cristal courbé. C. R. Acad. Sci. 223, 31–32.
Guinier, A. (1956). Théorie et technique de la radiocristallographie. Paris: Dunod.
Guinier, A. (1963). X-ray diffraction. San Francisco: Freeman.
Guinier, A. & Dexter, D. L. (1963). X-ray studies of materials. New York: Interscience.
Guinier, A. & Sébilleau, F. (1952). Montague achromatique pour la détermination du profile des raies des rayons X. C. R. Acad. Sci. 235, 888–890.
Hall, M. M. Jr, Veeraraghavan, V. G., Rubin, H. & Winchell, P. G. (1977). The approximation of symmetric X-ray peaks by Pearson type VII distributions. J. Appl. Cryst. 10, 66–68.
Hanawalt, J. D. & Rinn, H. W. (1936). Identification of crystalline materials. Classification and use of X-ray diffraction patterns. Ind. Eng. Chem. Anal. Ed. 8, 244–247.
Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512.
Harding, M. M. (1988). The use of synchrotron radiation for Laue diffraction and for the study of very small crystals. Chemical crystallography with pulsed neutrons and synchrotron X-rays, edited by M. A. Carrondo & G. A. Jeffrey, pp. 537–561. NATO Advanced Study Institute Series C, Vol. 221. Dordrecht: Kluwer Academic Publishers.
Harding, M. M. & Kariuki, B. M. (1994). Microcrystal structure determination of AlPO4-CHA using synchrotron radiation. Acta Cryst. C50, 852–854.
Harding, M. M., Kariuki, B. M., Cernik, R. J. & Cressey, G. (1994). The structure of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Cryst. B50, 673–676.
Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.
Hart, M., Cernik, R. J., Parrish, W. & Toraya, H. (1990). Lattice parameter determination for powders using synchrotron radiation. J. Appl. Cryst. 23, 286–291.
Hart, M., Parrish, W. & Masciocchi, N. (1987). Studies of texture in thin films using synchrotron radiation and energy dispersive diffraction. Appl. Phys. Lett. 50, 897–899.
Hart, M., Rodrigues, A. R. D. & Siddons, D. P. (1984). Adjustable resolution Bragg reflection systems. Acta Cryst. A40, 502–507.
Hastings, J. B., Thomlinson, W. & Cox, D. E. (1984). Synchrotron X-ray powder diffraction. J. Appl. Cryst. 17, 85–89.
Hepp, A. & Baerlocher, Ch. (1988). Learned peak shape functions for powder diffraction data. Austr. J. Phys. 41, 229–236.
Hill, R. J. & Madsen, I. C. (1984). The effect of profile step counting time on the determination of crystal structure parameters by X-ray Rietveld analysis. J. Appl. Cryst. 17, 297–306.
Hofmann, E. G. & Jagodzinski, H. (1955). Eine neue, hochauflösende Röntgenfeinstruktur-Anlage mit verbessertem, fokussierendem Monochromator und Feinfokusröhe. Z. Metallkd. 46, 601–609.
Howard, S. A. & Preston, K. D. (1989). Profile fitting of powder diffraction patterns. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 8. Washington: Mineralogical Society of America.
Howard, S. A. & Snyder, R. L. (1983). An evaluation of some profile models and the optimization procedures used in profile fitting. Adv. X-ray Anal. 26, 73–80.
Huang, T. C. (1988). Precision peak determination in X-ray powder diffraction. Aust. J. Phys. 41, 201–212.
Huang, T. C., Hart, M., Parrish, W. & Masciocchi, N. (1987). Line-broadening analysis of synchrotron X-ray diffraction data. J. Appl. Phys. 61, 2813–2816.
Huang, T. C. & Parrish, W. (1984). A combined derivative method for peak search analysis. Adv. X-ray Anal. 27, 45–52.
Hull, A. W. (1917). A new method of X-ray crystal analysis. Phys. Rev. 10, 661–696.
Hull, A. W. (1919). A new method of chemical analysis. J. Am. Chem. Soc. 41, 1168–1175.
Järvinen, M. (1993). Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Cryst. 26, 525–531.
Järvinen, M., Merisalo, M., Pesonen, A. & Inkinen, O. (1970). Correction of integrated X-ray intensities for preferred orientation in cubic powders. J. Appl. Cryst. 3, 313–318.
Jenkins, R. (1989a). Instrumentation. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 2. Washington: Mineralogical Society of America.
Jenkins, R. (1989b). Experimental procedures, edited by D. L. Bish & J. E. Post, Chap. 3. Washington: Mineralogical Society of America.
Jenkins, R., Fawcett, T. G., Smith, D. K., Visser, J. W., Morris, M. C. & Frevel, L. K. (1986). International Centre for Diffraction Data. Sample preparation methods in X-ray powder diffraction. Powder Diffr. 1, 51–63.
Jenkins, R. & Paolini, F. R. (1974). An automatic divergence slit for the powder diffractometer. Norelco Rep. 21, 9–14.
Jenkins, R. & Schreiner, W. N. (1986). Considerations in the design of goniometers for use in X-ray powder diffractometers. Powder Diffr. 1, 305–319.
Jenkins, R. & Snyder, R. L. (1996). Introduction to X-ray powder diffractometry. New York: Wiley.
Johann, H. H. (1931). Die Ergeugung lichstarker Röntgenspektren mit Hilfe von Konkavkristallen. Z. Phys. 69, 185–206.
Johansson, T. (1933). Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z. Phys. 82, 507–528.
Kaplow, R. & Averbach, B. L. (1963). X-ray diffractometer for the study of liquid structures. Rev. Sci. Instrum. 34, 579–581.
Keijser, Th. H. de, Langford, J. I., Mittemeijer, E. J. & Vogels, A. B. P. (1982). Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Cryst. 15, 308–314.
Kevex Corporation (1990). Brochure describing equipment.
King, H. W., Gillham, C. J. & Huggins, F. G. (1970). A versatile Bragg–Brentano/Seemann–Bohlin powder diffractometer. Adv. X-ray Anal. 13, 550–577.
Klug, H. P. & Alexander, L. E. (1974). X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. New York: John Wiley.
Kunze, G. (1964a). Korrekturen höherer Ordnung für die mit Bragg–Brentano und Seemann–Bohlin Systemen gewonenen Messgrössen unter Berücksichtigung der Primärstrahldivergenz. Z. Angew. Phys. 17, 412–421.
Kunze, G. (1964b). Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenz-linien bei Bragg–Brentano und Seemann–Bohlin Diffraktometern. I. Z. Angew. Phys. 17, 522–534.
Kunze, G. (1964c). Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenz-linien bei Bragg–Brentano und Seemann–Bohlin Diffraktometern. II. Z. Angew. Phys. 18, 28–37.
Ladell, J. (1961). Interpretation of diffractometer line profiles distortion due to the diffraction process. Acta Cryst. 14, 47–53.
Ladell, J. & Parrish, W. (1959). Determination of spectral contamination of X-ray tubes. Philips Res. Rep. 14, 401–420.
Ladell, J., Parrish, W. & Taylor, J. (1959). Interpretation of diffractometer line profiles. Acta Cryst. 12, 561–567.
Ladell, J., Zagofsky, A. & Pearlman, S. (1975). Cu Kα2 elimination algorithm. J. Appl. Cryst. 8, 499–506.
Lang, A. R. (1956). Diffracted-beam monochromatization techniques in X-ray diffractometry. Rev. Sci. Instrum. 27, 17–25.
Langford, J. I. (1978). A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst. 11, 10–14.
Langford, J. I. (1982). The variance as a measure of line broadening: corrections for truncation, curvature and instrument effects. J. Appl. Cryst. 15, 315–322.
Langford, J. I. (1987). Some applications of pattern fitting to powder diffraction data. Prog. Cryst. Growth Charact. 14, 185–211.
Langford, J. I. (1992). The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition. Accuracy in Powder Diffraction II, edited by E. Prince & J. K. Stalick, pp. 110–127. NIST Spec. Publ. No. 846. Gaithersburg, MA: US Department of Commerce.
Langford, J. I., Delhez, R., de Keijser, Th. H. & Mittemeijer, E. J. (1988). Profile analysis for microcrystalline properties by the Fourier and other methods. Aust. J. Phys. 41, 173–187.
Langford, J. I. & Wilson, A. J. C. (1962). Counter diffractometer: the effect of specimen transparency on the intensity, position and breadth of X-ray powder diffraction lines. J. Sci. Instrum. 39, 581–585.
LeGalley, D. P. (1935). A type of Geiger–Müller counter suitable for the measurement of diffracted Mo K X-rays. Rev. Sci. Instrum. 6, 279–283.
Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; the structures of Al2Y4O9 and I2O4. J. Appl. Cryst. 20, 123–129.
Lim, G., Parrish, W., Ortiz, C., Bellotto, M. & Hart, M. (1987). Grazing incidence synchrotron X-ray diffraction method for analyzing thin films. J. Mater. Res. 2, 471–477.
Lindemann, R. & Trost, A. (1940). Das Interferenz-Zählrohr als Hilfsmittel der Feinstrukturforschung mit Röntgenstrahlen. Z. Phys. 115, 456–468.
Lipson, H. & Steeple, H. (1970). Interpretation of X-ray powder diffraction patterns. London: Macmillan.
Louër, D. & Langford, J. I. (1988). Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J. Appl. Cryst. 21, 430–437.
McCusker, L. (1988). The ab initio structure determination of Sigma-2 (a new clathrasil phase) from synchrotron powder diffraction data. J. Appl. Cryst. 21, 305–310.
Mack, M. & Parrish, W. (1967). Seemann–Bohlin X-ray diffractometry. II. Comparison of aberrations and intensity with conventional diffractometer. Acta Cryst. 23, 693–700.
Mack, M., Parrish, W. & Taylor, J. (1964). Methods of determining centroid X-ray wavelengths: Cu Kα and Fe Kα. J. Appl. Phys. 35, 118–127.
McMahon, M. I. & Nelmes, R. J. (1993). New high-pressure phase of Si. Phys. Rev. B, 47, 8337–8340.
Malmros, G. & Werner, P. E. (1973). Automatic densitometer measurement of powder diffraction photographs. Acta Chem. Scand. 27, 493–502.
Morris, R. E., Harrison, W. T. A., Nicol, J. M., Wilkinson, A. P. & Cheetham, A. K. (1992). Determination of complex structures by combined neutron and synchrotron X-ray powder diffraction. Nature (London), 359, 519–522.
Mortier, W. J. & Constenoble, M. L. (1973). The separation of overlapping peaks in X-ray powder patterns with the use of an experimental profile. J. Appl. Cryst. 6, 488–490.
Newsam, J. M., King, H. E. Jr & Liang, K. S. (1989). X-ray diffraction using synchrotron radiation – a catalysis perspective. Adv. X-ray Anal. 32, 9–20.
Ogilvie, R. E. (1963). Parafocusing diffractometry. Rev. Sci. Instrum. 34, 1344–1347.
Parratt, L. G. (1936). Kα satellite lines. Phys. Rev. 50, 1–15.
Parrish, W. (1949). X-ray powder diffraction analysis: film and Geiger counter techniques. Science, 110, 368–371.
Parrish, W. (1955). Elimination of the second image in double-coated film. Norelco Rep. 2, 67.
Parrish, W. (1958). Advances in X-ray diffractometry of clay minerals. Seventh Natl Conf. Clays and Clay Minerals, pp. 230–259. New York: Pergamon.
Parrish, W. (1965). X-ray analysis papers. Eindhoven: Centrex.
Parrish, W. (1967). Improved method of measuring X-ray tube focus. Rev. Sci. Instrum. 12, 1779–1782.
Parrish, W. (1968). X-ray diffractometry methods for complex powder patterns. X-ray and electron methods of analysis, edited by H. van Alphen & W. Parrish, pp. 1–35. New York: Plenum.
Parrish, W. (1974). Role of diffractometer geometry in the standardization of polycrystalline data. Adv. X-ray Anal. 17, 97–105.
Parrish, W. (1983). History of the X-ray powder method in the USA. Crystallography in North America, edited by D. M. McLachlan Jr & J. P. Glusker, pp. 201–214. American Crystallographic Association.
Parrish, W. (1988). Advances in synchrotron X-ray polycrystalline diffraction. Aust. J. Phys. 41, 101–112.
Parrish, W. & Cisney, E. (1948). An improved X-ray diffraction camera. Philips Tech. Rev. 10, 157–167.
Parrish, W., Hamacher, E. A. & Lowitzsch, K. (1954). The `Norelco' X-ray diffractometer. Philips Tech. Rev. 16, 123–133.
Parrish, W. & Hart, M. (1985). Synchrotron experimental methods for powder structure refinement. Trans. Am. Crystallogr. Assoc. 21, 51–55.
Parrish, W. & Hart, M. (1987). Advantages of synchrotron radiation for polycrystalline diffractometry. Z. Kristallogr. 179, 161–173.
Parrish, W., Hart, M. & Huang, T. C. (1986). Synchrotron X-ray polycrystalline diffractometry. J. Appl. Cryst. 19, 92–100.
Parrish, W. & Huang, T. C. (1980). Accuracy of the profile fitting method for X-ray polycrystalline diffractometry. US Natl Bur. Stand. Spec. Publ. No. 457, pp. 95–110.
Parrish, W. & Huang, T. C. (1983). Accuracy and precision in X-ray polycrystalline diffraction. Adv. X-ray Anal. 26, 35–44.
Parrish, W., Huang, T. C. & Ayers, G. L. (1976). Profile fitting: a powerful method of computer X-ray instrumentation and analysis. Trans. Am. Crystallogr. Assoc. 12, 55–73.
Parrish, W., Huang, T. C. & Ayers, G. L. (1984). Computer simulation of powder patterns. Adv. X-ray Anal. 27, 75–80.
Parrish, W. & Lowitzsch, K. (1959). Geometry, alignment and angular calibration of X-ray diffractometers. Am. Mineral. 44, 564–583.
Parrish, W., Lowitzsch, K. & Spielberg, N. (1958). Fluorescent sources for X-ray diffractometry. Acta Cryst. 11, 400–405.
Parrish, W. & Mack, M. (1967). Seemann–Bohlin X-ray diffractometry. I. Instrumentation. Acta Cryst. 23, 687–692.
Parrish, W., Mack, M. & Taylor, J. (1963). Kα satellite interference in X-ray diffractometer line profiles. J. Appl. Phys. 34, 2544–2548.
Parrish, W., Mack, M. & Taylor, J. (1966). Determination of apertures in the focusing plane of X-ray powder diffractometers. J. Sci. Instrum. 43, 623–628.
Parrish, W., Mack, M. & Vajda, I. (1967). Seemann–Bohlin linkage for Norelco diffractometer. Norelco Rep. 14, 56–59.
Parrish, W. & Vajda, I. (1966). Ray-proof slit mount for X-ray powder diffractometers. Rev. Sci. Instrum. 37, 1607–1608.
Parrish, W. & Vajda, I. (1971). X-ray camera having a semicylindrical film holder and means to simultaneously rotate a specimen about two mutually perpendicular axes. US patent No. 3 626 185, 7 December 1971.
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.
Peiser, H. S., Rooksby, H. P. & Wilson, A. J. C. (1955). Editors. X-ray diffraction by polycrystalline materials. London: The Institute of Physics.
Phillips, W. C. (1985). X-ray sources. Methods Enzymol. 114, 300–316.
Pike, E. R. & Ladell, J. (1961). The Lorentz factor in powder diffraction. Acta Cryst. 14, 53–54.
Piltz, R. O., McMahon, M. I., Crain, J., Hatton, P. D., Nelmes, R. J., Cernik, R. J. & Bushnell-Wye, G. (1992). An imaging plate system for high-pressure powder diffraction: the data processing side. Rev. Sci. Instrum. 63, 700–702.
Prince, E. & Stalick, J. K. (1992). Accuracy in Powder Diffraction II, NIST Spec. Publ. No. 846. Gaithersburg, MA: US Department of Commerce.
Pyrros, N. P. & Hubbard, C. R. (1983). Rational functions as profile models in powder diffraction. J. Appl. Cryst. 16, 289–294.
Rachinger, W. A. (1948). A correction for the α1α2 doublet in the measurement of widths of X-ray diffraction lines. J. Sci. Instrum. 25, 254–255.
Read, M. H. & Hensler, D. H. (1972). X-ray analysis of sputtered films of beta-tantalum and body-centered cubic titanium. Thin Solid Films, 10, 123–135.
Rendle, D. F. (1983). A simple Gandolfi attachment for a Debye–Scherrer camera and its use in a forensic science laboratory. J. Appl. Cryst. 16, 428–429.
Renninger, M. (1956). Absolutvergleich der Stärksten Röntgenstrahl-Reflexe verschiedener Kristalle. Z. Kristallogr. 107, 464–470.
Reynolds, R. C. (1989). Principles of powder diffraction. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 1. Washington: Mineralogical Society of America.
Rietveld, H. M. (1969). A profile-refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.
Rigaku Corporation (1990). Brochure describing equipment.
Ross, P. A. (1928). A new method of spectroscopy for faint X-radiations. J. Opt. Soc. Am. 16, 433–438.
Savitzky, A. & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639.
Schwartz, L. S. & Cohen, J. B. (1987). Diffraction from materials, 2nd ed. New York: Springer-Verlag.
Seemann, H. (1919). Eine fokussierende röntgenspektroskopische Anordnung für Kristallpulver. Ann. Phys. (Leipzig), 55, 455–464.
Segmüller, A. (1957). Die Bestimmung von Glanzwinkeln, Linienbreiten und Intensitäten der Röntgen-interferenzen mit einem Geiger–Zählrohr-goniometer nach dem Seemann–Bohlin-prinzip. Z. Metallkd. 48, 448–454.
Shishiguchi, S., Minato, I. & Hashizume, H. (1986). Rapid collection of X-ray powder data for pattern analysis by a cylindrical position-sensitive detector. J. Appl. Cryst. 19, 420–426.
Smith, D. G. W., Reed, S. J. B. & Ware, N. G. (1974). Kβ/Kα intensity ratios for elements of atomic number 20 to 30. X-ray Spectrosc. 3, 149–150.
Smith, D. K. (1989). Computer analysis of diffraction data. Modern powder diffraction, edited by D. L. Bish & J. E. Post, Chap. 7. Washington: Mineralogical Society of America.
Smith, D. K. & Barrett, C. S. (1979). Special handling problems in X-ray diffractometry. Adv. X-ray Anal. 22, 1–12
Smith, D. K., Nichols, M. C. & Zolensky, M. E. (1983). POWD10 – a FORTRAN IV program for calculating X-ray powder diffraction patterns – version 10. The Pennsylvania State University, University Park, PA, USA.
Smith, G. S. & Snyder, R. L. (1979). FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J. Appl. Cryst. 12, 60–65.
Smith, S. T., Snyder, R. L. & Brownell, W. E. (1979). Minimization of preferred orientation in powders by spray drying. Adv. X-ray Anal. 22, 77–88.
Soller, W. (1924). A new precision X-ray spectrometer. Phys. Rev. 24, 158–167.
Sonneveld, E. J. & Visser, J. W. (1975). Automatic collection of powder data from photographs. J. Appl. Cryst. 8, 1–7.
Steinmeyer, P. A. (1986). Special applications of the Debye microdiffractometer. Adv. X-ray Anal. 29, 251–256.
Straumanis, M. E. (1959). Absorption correction in precision determination of lattice parameters. J. Appl. Phys. 30, 1965–1969.
Suortti, P., Ahtee, M. & Unonius, L. (1979). Voigt function fit of X-ray and neutron powder diffraction profiles. J. Appl. Cryst. 12, 365–369.
Sussieck-Fornefeld, C. & Schmetzer, K. (1987). A modified Gandolfi camera with improved adjustment facilities. Powder Diffr. 2, 82–83.
Tao, K. & Hewett, C. A. (1987). Thin film X-ray analysis using the Read camera: a refinement of the technique. Rev. Sci. Instrum. 58, 212–214.
Taupin, D. (1973). Automatic peak determination in X-ray powder patterns. J. Appl. Cryst. 6, 266–273.
Taylor, A. (1961). X-ray metallography. New York: John Wiley.
Taylor, J., Mack, M. & Parrish, W. (1964). Evaluation of truncation methods for accurate centroid lattice parameter determination. Acta Cryst. 17, 1229–1245.
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 20, 79–83.
Toraya, H. (1986). Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffractometer data. J. Appl. Cryst. 19, 440–447.
Toraya, H. (1988). The deconvolution of overlapping reflections by the procedure of direct fitting. J. Appl. Cryst. 21, 192–196.
Toraya, H. (1989). The determination of direction-dependent crystallite size and strain by X-ray whole-powder-pattern fitting. Powder Diffr. 4, 130–136.
Toraya, H., Yoshimura, M. & Somiya, S. (1983). A computer program for the deconvolution of X-ray diffraction profiles with the composite of Pearson type VII functions. J. Appl. Cryst. 16, 653–657.
Tournarie, M. (1958). Méthode général de correction des effets instrumentaux appliquée à l'interprétation des diagrammes de rayons X. Bull. Soc. Fr. Minéral. Cristallogr. 81, 278–286.
Vineyard, G. H. (1982). Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B, 26, 4146–4159.
Wagner, C. N. J. (1969). Diffraction analysis of liquid and amorphous alloys. Adv. X-ray Anal. 12, 50–71.
Warren, B. E. (1969). X-ray diffraction. Reading, MA. Addison-Wesley.
Wassermann, G. & Wiewiorosky, J. (1953). Uber ein Geiger-Zahlrohr-goniometer nach dem Seeman–Bohlin prinzip. Z. Metallkd. 44, 567–570.
Wertheim, G., Butler, M., West, K. & Buchanan, D. (1974). Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369–1371.
Will, G. (1979). POWLS: a powder least-squares program. J. Appl. Cryst. 12, 483–485.
Will, G., Bellotto, M., Parrish, W. & Hart, M. (1988). Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J. Appl. Cryst. 21, 182–191.
Will, G., Masciocchi, N., Hart, M. & Parrish, W. (1987). Ytterbium LIII-edge anomalous scattering measured with synchrotron radiation powder diffraction. Acta Cryst. A43, 677–683.
Will, G., Masciocchi, N., Parrish, W. & Hart, M. (1987). Refinement of simple crystal structures from synchrotron radiation powder diffraction data. J. Appl. Cryst. 20, 394–401.
Will, G., Masciocchi, N., Parrish, W. & Lutz, H. D. (1990). Crystal structure and cation distribution of MnCrInS4 from synchrotron powder diffraction data. Z. Kristallogr. 190, 277–285.
Wilson, A. J. C. (1963). Mathematical theory of X-ray powder diffractometry. Eindhoven: Philips Technical Library.
Wilson, A. J. C. (1965). The location of peaks. Br. J. Appl. Phys. 16, 665–674.
Wilson, A. J. C. (1974). Powder diffractometry. X-ray diffraction, edited by L. V. Azároff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson & R. A. Young, Chap. 6. New York: McGraw-Hill.
Wilson, A. J. C. (1980). Relationship between `observed' and `true' intensity: effect of various counting modes. Acta Cryst. A36, 929–936.
Wölfel, E. R. (1981). A new method for quantitative X-ray analysis of multiphase mixtures. J. Appl. Cryst. 14, 291–296.
Wolff, P. M. de (1948). Multiple Guinier cameras. Acta Cryst. 1, 207–211.
Wolff, P. M. de (1957). Self-centering combined aperture- and scatter-slit for powder diffractometry with constant effective specimen area. Appl. Sci. Res. B, 6, 296–300.
Wolff, P. M. de (1968a). A simplified criterion for the reliability of a powder pattern indexing. J. Appl. Cryst. 1, 108–113.
Wolff, P. M. de (1968b). Focusing monochromators and transmission techniques. Norelco Rep. 15, 44–49.
Wolff, P. M. de, Taylor, J. & Parrish, W. (1959). Experimental study of effect of crystallite size statistics on X-ray diffractometer intensities. J. Appl. Phys. 30, 63–69.
Wolff, P. M. de & Visser, J. W. (1988). Absolute intensities – outline of a recommended practice. Powder Diffr. 3, 202–204.
Yoshimatsu, M. & Kozaki, S. (1977). High brilliance X-ray sources. Topics in applied physics, Vol. 22, X-ray optics, edited by H.-J. Queisser, pp. 9–33. Berlin: Springer-Verlag.
Young, R. A. (1963). Balanced filters for X-ray diffractometry. Z. Kristallogr. 118, 233–247.
Young, R. A., Prince, E. & Sparks, R. A. (1982). Suggested guidelines for the publication of Rietveld analyses and pattern decomposition studies. J. Appl. Cryst. 15, 357–359.
Young, R. A. & Wiles, D. B. (1982). Profile shape functions in Rietveld refinements. J. Appl. Cryst. 15, 430–438.
Yvon, K., Jeitschko, W. & Parthé, E. (1977). LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J. Appl. Cryst. 10, 73–74.