Tables for
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 2.7, pp. 113-123
doi: 10.1107/97809553602060000582

Chapter 2.7. Topography

A. R. Langa

aH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, England


Allinson, N. M. (1994). Development of non-intensified charge-coupled device area X-ray detectors. J. Synchrotron Rad. 1, 54–62.
Allinson, N. M., Allsopp, D. W. E., Quayle, J. A. & Magorrian, B. G. (1991). Effects of soft X-ray irradiation on solid-state imagers. Nucl. Instrum. Methods, A310, 267–272.
Armstrong, R. W. & Wu, C. C. (1973). X-ray diffraction microscopy. Tools and techniques for microstructural analysis, edited by J. L. McCall & W. M. Mueller, pp. 169–219. New York: Plenum.
Arndt, U. W. (1986). X-ray position-sensitive detectors. J. Appl. Cryst. 19, 145–163.
Arndt, U. W. (1990). X-ray television area detectors. Synchrotron Radiat. News, 3, 17–22.
Authier, A. (1961). Etude de la transmission anormale des rayons X dans des cristaux de silicium. I. Case des cristaux parfaits. Bull. Soc. Fr. Minéral. Cristallogr. 84, 51–89.
Authier, A. (1970). Ewald waves in theory and experiment (dynamical theory of X-ray diffraction). Advances in structure research by diffraction methods, Vol. 3, edited by R. Brill & R. Mason, pp. 1–51. Oxford: Pergamon Press.
Authier, A. (1977). Section topography. X-ray optics. Applications to solids, edited by H.-J. Queisser, Chap. 5, pp. 145–189. Berlin: Springer.
Barrett, C. S. (1945). A new microscopy and its potentialities. Trans. Am. Inst. Min. Metall. Pet. Eng. 161, 15–64.
Barth, H. & Hosemann, R. (1958). Anwendung der Parallelstrahlmethode in Durchstrahlungsfall zur Prüfung des Kristallinneren mit Röntgen-Strahlen. Z. Naturforsch. Teil A, 13, 792–794.
Batterman, B. W. & Cole, H. (1964). Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681–717.
Bauspiess, W., Bonse, U., Graeff, W. & Rauch, H. (1977). A bicrystal monochromator of moderate wavelength resolution for use with X-rays or thermal neutrons. J. Appl. Cryst. 10, 338–343.
Beaumont, J. H. & Hart, M. (1974). Multiple Bragg reflection monochromators for synchrotron X radiation. J. Phys. E, 7, 823–829.
Berg, W. F. (1931). Über ein röntgenographische Methode zur Untersuchung von Gitterstörungen an Kristallen. Naturwissenschaften, 19, 391–396.
Boettinger, W. J., Burdette, H. E. & Kuriyama, M. (1979). X-ray magnifier. Rev. Sci. Instrum. 50, 26–30.
Bond, W. L. & Andrus, J. (1952). Structural imperfections in quartz crystals. Am. Mineral. 37, 622–632.
Bonse, U. & Fischer, K. (1981). The new multi-purpose two-axis diffractometer for synchrotron X-rays at DORIS. Nucl. Instrum. Methods, 190, 593–603.
Bonse, U. & Graeff, W. (1977). X-ray and neutron interferometry. X-ray optics. Applications to solids, edited by H.-J. Queisser, Chap. 4, pp. 93–143. Berlin: Springer.
Bonse, U. & Hart, M. (1965a). Tailless X-ray single-crystal reflection curves obtained by multiple reflection. Appl. Phys. Lett. 7, 238–240.
Bonse, U. & Hart, M. (1965b). An X-ray interferometer. Appl. Phys. Lett. 6, 155–158.
Bonse, U. & Hart, M. (1966). Moiré patterns of atomic planes obtained by X-ray interferometry. Z. Phys. 190, 455–467.
Bonse, U. & Kappler, E. (1958). Röntgenographische Abbildung des Verzerrungsfeldes einzelner Versetzungen in Germanium-Einkristallen. Z. Naturforsch. Teil A, 13, 348–349.
Bonse, U., Materlik, G. & Schröder, W. (1976). Perfect-crystal monochromators for synchrotron X-radiation. J. Appl. Cryst. 9, 233–230.
Bonse, U., Olthoff-Münter, K. & Rumpf, A. (1983). Monolithic double-grooved-crystal monochromators with tunable harmonic suppression for neutrons and X-rays. J. Appl. Cryst. 16, 524–531.
Bowen, D. K., Clark, G. F., Davies, S. T., Nicholson, J. R. S., Roberts, K. J., Sherwood, J. N. & Tanner, B. K. (1982). The X-ray topography station at Daresbury Laboratory. Nucl. Instrum. Methods, 195, 277–284.
Bowen, D. K. & Davies, S. T. (1983). The double-crystal X-ray camera at Daresbury Laboratory. Nucl. Instrum. Methods, 208, 725–729.
Brádler, J. & Lang, A. R. (1968). Use of the Ewald sphere in aligning crystal pairs to produce X-ray moiré fringes. Acta Cryst. A24, 246–247.
Castelli, C. M., Allinson, N. M., Moon, K. J. & Watson, D. L. (1994). High spatial resolution scintillation screens coupled to CCD detectors for X-ray imaging applications. Nucl. Instrum. Methods, A348, 649–653.
Cerva, H. & Graeff, W. (1984). Contrast investigation of surface acoustic waves by stroboscopic topography. I. Orientation contrast. Phys. Status Solidi A, 82, 34–45.
Cerva, H. & Graeff, W. (1985). Contrast investigation of surface acoustic waves by stroboscopic topography. II. Wavefield deviation contrast. Phys. Status Solidi A, 87, 507–516.
Chikawa, J.-I. & Austerman, S. B. (1968). X-ray double-crystal method of analyzing microstrains with BeO single crystals. Advances in X-ray analysis, Vol. 11, edited by J. B. Newkirk & G. R. Mallett, pp. 393–400. New York: Plenum.
Chikawa, J.-I. & Fujimoto, I. (1968). X-ray diffraction topography with a vidicon television image system. Appl. Phys. Lett. 13, 387–389.
Chikawa, J.-I., Sato, F. & Fujimoto, I. (1984). High-resolution topography detector. Acta Cryst. A40, C403.
Compton, A. H. & Allison, S. K. (1935). X-rays in theory and experiment. New York: Van Nostrand.
Du Mond, J. W. M. (1937). Theory of the use of more than two successive X-ray crystal reflections to obtain increased resolving power. Phys. Rev. 52, 872–883.
Gerold, V. & Meier, F. (1959). Der röntgenographische Nachweiss von Versetzungen in Germanium. Z. Phys. 155, 387–394.
Guinier, A. & Tennevin, J. (1949). Sur deux variantes de la méthode de Laue et leurs applications. Acta Cryst. 2, 133–138.
Hart, M. (1968). `Perfect crystals'. A study of their structural defects. Sci. Prog. Oxford, 56, 429–447.
Hart, M. (1971). Bragg reflection X-ray optics. Rep. Prog. Phys. 34, 435–490.
Hart, M. (1972). A complete determination of dislocation Burgers vectors by X-ray interferometry. Philos. Mag. 26, 821–831.
Hart, M. (1975a). Synchrotron radiation – its application to high-speed, high-resolution X-ray diffraction topography. J. Appl. Cryst. 8, 436–444.
Hart, M. (1975b). Ten years of X-ray interferometry. Proc. R. Soc. London Ser. A, 346, 1–22.
Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.
Hart, M. & Rodrigues, A. R. D. (1978). Harmonic-free single-crystal monochromators for neutrons and X-rays. J. Appl. Cryst. 11, 248–253.
Hart, M., Rodrigues, A. R. D. & Siddons, D. P. (1984). Adjustable resolution Bragg reflection systems. Acta Cryst. A40, 502–507.
Hart, M., Sauvage, M. & Siddons, D. P. (1980). `White beam' synchrotron X-ray interferometry. Acta Cryst. A36, 947–951.
Hartmann, W. (1977). Live topography. X-ray optics. Applications to solids, edited by H.-J. Queisser, Chap. 6, pp. 191–219. Berlin: Springer.
Haruta, K. (1965). A new method of obtaining stereoscopic pairs of X-ray diffraction topographs. J. Appl. Phys. 36, 1789–1790.
Hashimoto, H. & Uyeda, R. (1957). Detection of dislocation by the moiré pattern in electron micrographs. Acta Cryst. 10, 143.
Hashizume, H. (1983a). Asymmetrically grooved monolithic crystal monochromators for suppression of harmonics in synchrotron X-radiation. J. Appl. Cryst. 16, 420–427.
Hashizume, H. (1983b). Asymmetrically grooved monolithic crystal monochromators for suppression of harmonics in synchrotron X-radiation: erratum. J. Appl. Cryst. 16, 648.
Hildebrandt, G. (1982). X-ray wave fields in perfect and nearly perfect crystals – theoretical background and recent applications. J. Phys. E, 15, 1140–1155.
International Tables for Crystallography (2001). Vol. B. Dordrecht: Kluwer Academic Publishers.
Ishikawa, T., Kitano, T. & Matsui, J. (1985). Synchrotron plane wave X-ray topography of GaAs with a separate (+, +) monochro-collimator. Jpn. J. Appl. Phys. Part 2, 24, L968–L971.
Ito, M., Yamaguchi, M. & Oba, K. (1987). CsI(Na) scintillation plate with high spatial resolution. IEEE Trans. Nucl. Sci. 34, 401–405.
Jacobs, L. & Hart, M. (1977). An X-ray topographic study of large crystals for a bent-crystal gamma diffractometer. Nucl. Instrum. Methods, 143, 319–325.
Jiang, S.-S. & Lang, A. R. (1983). Stacking fault contrast in X-ray diffraction: a high resolution experimental study. Proc. R. Soc. London Ser. A, 388, 249–271.
Kato, N. (1974). X-ray diffraction, by L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson & R. A. Young, Chaps. 3–5, pp. 176–438. New York: McGraw-Hill.
Kikuta, S. (1971). X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. II. Type I collimator. J. Phys. Soc. Jpn, 30, 222–227.
Kikuta, S. & Kohra, K. (1970). X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. I. General considerations on collimators. J. Phys. Soc. Jpn, 29, 1322–1328.
Kohra, K. (1972). Dynamical asymmetric diffraction and its applications to X-ray optical systems. Proceedings of the VIth International Conference on X-ray Optics and Microanalysis, edited by G. Shinoda, K. Kohra & T. Ichinokawa, pp. 35–45. Tokyo: University of Tokyo Press.
Kuriyama, M. & Boettinger, W. J. (1976). On the angular divergence of out-going beams in an asymmetric diffraction geometry. Acta Cryst. A32, 511–512.
Kuriyama, M., Boettinger, W. J. & Cohen, G. G. (1982). Synchrotron radiation topography. Annu. Rev. Mater. Sci. 12, 23–50.
Lang, A. R. (1957). A method for the examination of crystal sections using penetrating characteristic radiation. Acta Metall. 5, 358–364.
Lang, A. R. (1959a). The projection topograph: a new method in X-ray diffraction microradiography. Acta Cryst. 12, 249–250.
Lang, A. R. (1959b). Studies of individual dislocations in crystals by X-ray diffraction microradiography. J. Appl. Phys. 30, 1748–1755.
Lang, A. R. (1963). Applications of `limited projection topographs' and `direct beam topographs' in X-ray diffraction topography. Br. J. Appl. Phys. 14, 904–907.
Lang, A. R. (1968). X-ray moiré topography of lattice defects in quartz. Nature (London), 220, 652–657.
Lang, A. R. (1974). On the growth-sectorial dependence of defects in natural diamonds. Proc. R. Soc. London Ser. A, 340, 233–248.
Lang, A. R. (1978). Techniques and interpretation in X-ray topography. Diffraction and imaging techniques in material science, 2nd, revised edition, edited by S. Amelinckx, R. Gevers & J. Van Landuyt, pp. 623–714. Amsterdam: North-Holland.
Lang, A. R. (1983). Compact device for X-ray section topography with synchrotron sources. Rev. Sci. Instrum. 54, 897–899.
Lang, A. R., Makepeace, A. P. W., Moore, M. & Machado, W. G. (1983). On the variation of X-ray diffraction contrast with wavelength: a study with synchrotron radiation. J. Appl. Cryst. 16, 113–125.
Lang, A. R. & Reifsnider, K. (1969). Rapid X-ray diffraction topography using a high-gain image intensifier. Appl. Phys. Lett. 15, 258–260.
Mai, Z.-H., Mardix, S. & Lang, A. R. (1980). A high-resolution section topograph technique applicable to synchrotron radiation sources. J. Appl. Cryst. 13, 180–187.
Materlik, G. & Kostroun, V. O. (1980). Monolithic crystal monochromators for synchrotron radiation with order sorting and polarising properties. Rev. Sci. Instrum. 51, 86–94.
Matsushita, T., Kikuta, S. & Kohra, K. (1971). X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. III. Type II collimator. J. Phys. Soc. Jpn, 30, 1136–1144.
Meieran, E. S., Landre, J. K. & O'Hara, S. (1969). Direct video imaging of X-ray topographs. Appl. Phys. Lett. 14, 368–371.
Milne, A. D. (1971). Scanning source X-ray topography. J. Appl. Cryst. 4, 251–252.
Nakayama, K., Hashizume, H., Miyoshi, A., Kikuta, S. & Kohra, K. (1973). Use of asymmetrical dynamical diffraction of X-rays for multiple-crystal arrangements of the (n1, +n2) setting. Z. Naturforsch. Teil. A, 28, 632–638.
Newkirk, J. B. (1958). Method for the detection of dislocations in silicon by X-ray extinction contrast. Phys. Rev. 110, 1465–1466.
Newkirk, J. B. (1959). The observation of dislocations and other imperfections by X-ray extinction contrast. Trans. TMS–AIME, 215, 483–497.
Petroff, J. F., Sauvage, M., Riglet, P. & Hashizume, H. (1980). Synchrotron-radiation plane-wave topography. I. Application to misfit dislocation imaging in III–V heterojunctions. Philos. Mag. A42, 319–338.
Pinsker, Z. G. (1978). Dynamical scattering of X-rays in crystals. Berlin: Springer.
Queisser, H.-J., Hartmann, W. & Hagen, W. (1981). Real-time X-ray topography: defect dynamics and crystal growth. J. Cryst. Growth. 52, 897–906.
Ramachandran, G. N. (1944). X-ray topographs of diamond. Proc. Indian Acad. Sci. Sect. A, 19, 280–292.
Reifsnider, K. & Green, R. E. Jr (1968). Image intensifier system for dynamic X-ray diffraction studies. Rev. Sci. Instrum. 39, 1651–1655.
Renninger, M. (1961). Asymmetrische Bragg-Reflexion am Idealkrystall zur Erhöhung des Doppelspekrometer-Auflösungsvermögens. Z. Naturforsch. Teil. A, 16, 1110–1111.
Renninger, M. (1965). Beitrage zur doppeldiffraktometrischen Kristall-Topographic mit Röntgenstrahlen I. Methodik und Ergebnisse typischer Art. Z. Angew. Phys. 19, 20–33.
Sato, F., Maruyama, H., Goto, K., Fujimoto, I., Shidara, K., Kawamura, T., Hirai, T., Sakai, H. & Chikawa, J.-I. (1993). Characteristics of a new high-sensitivity X-ray imaging tube for video topography. Jpn. J. Appl. Phys. 32, 2142–2146.
Schulz, L. G. (1954). Method of using a fine-focus X-ray tube for examining the surface of single crystals. J. Met: Trans. AIME, 200, 1082–1083.
Stevels, A. L. N. & Kühl, W. (1974). New phosphors for X-ray image intensifier tubes. Medicamundi, 19, 3–7.
Suzuki, S., Ando, M., Hayakawa, K., Nittono, O., Hashizume, H., Kishino, S. & Kohra, K. (1984). A high-speed X-ray topography camera for use with synchrotron radiation at the photon factory. Nucl. Instrum. Methods, 227, 584–592.
Tanner, B. K. (1976). X-ray diffraction topography. Oxford: Pergamon Press.
Tanner, B. K. (1977). Crystal assessment by X-ray topography using synchrotron radiation. Prog. Cryst. Growth Charact. 1, 23–56.
Tanner, B. K. & Bowen, D. K. (1980). Editors. Characterization of crystal growth defects by X-ray methods. New York: Plenum.
Tate, M. W., Eikenberry, E. F., Barna, S. L., Wall, M. E., Lawrance, J. L. & Gruner, S. M. (1995). A large-format high-resolution area X-ray detector based on a fiber-optically bonded charge-coupled device (CCD). J. Appl. Cryst. 28, 196–205.
Tuomi, T., Naukkarinen, K. & Rabe, P. (1974). Use of synchrotron radiation in X-ray diffraction topography. Phys. Status Solidi A, 25, 93–106.
Van Mellaert, L. & Schwuttke, G. H. (1972). Feedback control system for scanning X-ray topography. J. Appl. Phys. 43, 687–692.
Wallace, C. A. & Ward, R. C. C. (1975). A high-resolution X-ray topographical technique for thin flexible crystal plates. J. Appl. Cryst. 8, 281–286.
Whatmore, R. W., Goddard, P. A., Tanner, B. K. & Clark, G. F. (1982). Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography. Nature (London), 299, 44–46.