International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 3.4, pp. 162-170
https://doi.org/10.1107/97809553602060000588

Chapter 3.4. Mounting and setting of specimens for X-ray crystallographic studies

P. F. Lindleya

aESRF, Avenue des Martyrs, BP 220, F-38043 Grenoble CEDEX, France

References

Adlhart, W. & Huber, H. (1982). A low-temperature X-ray Weissenberg goniometer with closed-cycle cooling to about 28 K. J. Appl. Cryst. 15, 241–244.
Adlhart, W., Tzafaras, N., Sueno, S., Jagodzinski, H. & Huber, H. (1982). An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere. J. Appl. Cryst. 15, 236–240.
Alkire, R. W., Larson, A. C., Vergamini, P. J., Schirber, J. E. & Morosin, B. (1985). High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: preliminary investigation of Tl3PSe4. J. Appl. Cryst. 18, 145–149.
Allen, S., Cosier, J., Glazer, A. M., Hastings, T. J., Smith, D. T. & Wood, I. G. (1982). A microprocessor-controlled continuous-flow cryostat for single-crystal X-ray diffraction in the range 10–300 K. J. Appl. Cryst. 15, 382–387.
Archer, J. M. & Lehmann, M. S. (1986). A simple adjustable mount for a two-stage cryorefrigerator on an Eulerian cradle. J. Appl. Cryst. 19, 456–458.
Argoud, R. & Muller, J. (1989a). Effect of stress from the glue on single-crystal X-ray intensities at high or low temperatures. J. Appl. Cryst. 22, 378–380.
Argoud, R. & Muller, J. (1989b). Magnetically coupled crystal holder and liquid-helium cryostat for X-ray four-circle diffractometer studies between 5 and 300 K. J. Appl. Cryst. 22, 584–591.
Arndt, U. W. & Stubbings, S. J. (1987). A miniature Peltier-effect goniometer-head attachment. J. Appl. Cryst. 20, 445.
Arndt, U. W. & Wonacott, A. J. (1977). The rotation method in crystallography. Amsterdam/New York/Oxford: North-Holland.
Arnold, H., Bartl, H., Fuess, H., Ihringer, J., Kosten, K., Löchner, U., Pennartz, P. U., Prandl, W. & Wroblewski, T. (1989). New powder diffractometer at HASYLAB/DESY. Rev. Sci. Instrum. 60, 2380–2381.
Bartunik, H. D. & Schubert, P. (1982). Crystal cooling for protein crystallography with synchrotron radiation. J. Appl. Cryst. 15, 227–231.
Bhat, H. L., Clark, S. M., El Korashy, A. & Roberts, K. J. (1990). A furnace for in situ synchrotron Laue diffraction and its application to studies of solid-state phase transformations. J. Appl. Cryst. 23, 545–549.
Black, D. R., Burdette, H. E. & Early, J. G. (1986). Diffusion bonding of ductile single crystals for strain-free mounting. J. Appl. Cryst. 19, 279–280.
Boese, R. & Bläser, D. (1989). A procedure for the selection and transferring of crystals at low temperatures to diffractometers. J. Appl. Cryst. 22, 394–395.
Bouquiere, J. P., Finney, J. L., Lehmann, M. S., Lindley, P. F. & Savage, H. F. J. (1993). High-resolution neutron study of vitamin B12 coenzyme at 15 K: structure analysis and comparison with the structure at 279 K. Acta Cryst. B49, 79–89.
Bretherton, L. & Kennard, C. H. L. (1976). Crystal mounter. J. Appl. Cryst. 9, 416.
Brown, N. E., Swapp, S. M., Bennett, C. L. & Navrotsky, A. (1993). High-temperature X-ray diffraction: solutions to uncertainties in temperature and sample position. J. Appl. Cryst. 26, 77–81.
Buerger, M. J. (1964). The precession method in X-ray crystallography. New York: John Wiley.
Busing, W. R. & Levy, H. A. (1967). Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Cryst. 22, 457–464.
CAD4 Manual (1989). Enraf–Nonius, Scientific Instruments Division, PB 483, NL-2600 AL, Delft, The Netherlands.
Campos, C., Cardoso, L. P. & Caticha-Ellis, S. (1983). A simple method to cut a single crystal in any desired direction. J. Appl. Cryst. 16, 360.
Carr, P. D., Cruickshank, D. W. J. & Harding, M. M. (1992). The determination of unit-cell parameters from Laue diffraction patterns using their gnomonic projections. J. Appl. Cryst. 25, 294–308.
Cascio, D., Williams, R. & McPherson, A. (1984). The reduction of radiation damage in protein crystals by polyethylene glycol. J. Appl. Cryst. 17, 209–210.
Clegg, W. (1984). Enhancements of the `auto-indexing' method for cell determination in four-circle diffractometry. J. Appl. Cryst. 17, 334–336.
Clifton, I. J., Elder, M. & Hajdu, J. (1991). Experimental strategies in Laue crystallography. J. Appl. Cryst. 24, 267–277.
Cosier, J. & Glazer, A. M. (1986). A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Cryst. 19, 105–107.
D'Aprile, F. & Moretto, R. (1975). Two simple devices for sealing wet single crystals in capillary tubes. J. Appl. Cryst. 8, 696.
Denne, W. A. (1971a). A new concept in goniometer head design. J. Appl. Cryst. 4, 60–66.
Denne, W. A. (1971b). A technique for the rigid mounting of crystals in X-ray diffractometry. J. Appl. Cryst. 4, 400.
Dent Glasser, L. S. (1977). Crystallography and its applications, Chap. 6, pp. 125–155. New York/Cincinnati/Toronto/London/Melbourne: Van Nostrand Reinhold.
Desai, C. F. & Bhatt, V. P. (1984). A sample holder for cutting single crystals along any desired X-ray orientated plane. J. Appl. Cryst. 17, 369–370.
Dewan, J. C. & Tilton, R. F. (1987). Greatly reduced radiation damage in ribonuclease crystals mounted on glass fibres. J. Appl. Cryst. 20, 130–132.
D'Eye, R. W. M. & Wait, E. (1960). X-ray powder photography. London: Butterworth.
Duisenberg, A. J. M. (1992). Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Cryst. 25, 92–96.
Dumas, P. & Ripp, R. (1986). A real-time interactive graphics program to determine crystal orientation for the analysis of oscillation diffraction photographs. J. Appl. Cryst. 19, 28–33.
Edwards, S. L. (1993). Yokeless flow cell for Laue crystallography. J. Appl. Cryst. 26, 305–306.
Fischer, J., Moras, D. & Thierry, J. C. (1985). Single crystal diffractometry: strategy for rapidly decaying poorly diffracting crystals. J. Appl. Cryst. 18, 20–26.
Foit, F. F. Jr (1982). A technique for loading glass capillaries used in X-ray powder diffraction. J. Appl. Cryst. 15, 357.
Fraase Storm, G. M. & Tuinstra, F. (1986). A thermoelectric device for temperature-controlled single-crystal diffractometry. J. Appl. Cryst. 19, 372–373.
Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, I. D. Jr, Kuriyan, J., Parak, F., Petsko, G. A., Ringe, D., Tilton, R. F. Jr, Conolly, M. L. & Max, N. (1987). Thermal expansion of a protein. Biochemistry, 26, 254–261.
Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. (1979). Temperature-dependent X-ray diffraction as a probe of protein structure dynamics. Nature (London), 280, 558.
Gamblin, S. J. & Rogers, D. W. (1993). Some practical details of data collection at 100 K. In Data collection and processing. Proceedings of the CCP4 Study Weekend, edited by L. Sawyer, N. Isaacs & S. Bailey. Report DL/SCI/R34. SERC Daresbury Laboratory, Cheshire WA4 4AD, England.
Gonzalez, A. & Nave, C. (1994). Radiation damage in protein crystals at low temperature. Acta Cryst. D50, 874–877.
Graafsma, H., Sagerman, G. & Coppens, P. (1991). Closed-cycle helium cryostat for the Huber 511.1 diffractometer circle. J. Appl. Cryst. 24, 961–962.
Hajdu, J., McLaughlin, P. J., Helliwell, J. R., Sheldon, J. & Thompson, A. W. (1985). Universal cooling device for precession cameras, rotation cameras and diffractometers. J. Appl. Cryst. 18, 528–532.
Hanson, I. R. (1981). A rapid and accurate method of aligning a crystal on a Weissenberg goniometer. J. Appl. Cryst. 14, 353.
Hartmann, H., Parak, F., Steigemann, W., Petsko, G. A., Ringe-Ponzi, D. & Frauenfelder, H. (1982). Conformational substrates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc. Natl Acad. Sci. USA, 79, 4967–4971.
Hazen, R. M. & Finger, L. W. (1982). Comparative crystal chemistry, pp. 5–16. New York: Wiley.
Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., Campbell, J. E., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z. & Zurek, S. (1989). The recording and analysis of synchrotron X-radiation Laue diffraction photographs. J. Appl. Cryst. 22, 483–497.
Henriksen, K., Larsen, F. K. & Rasmussen, S. E. (1986). Mounting a 10 K cooling device without rotating seals on a four-circle diffractometer. J. Appl. Cryst. 19, 390–394.
Higashi, T. (1989). The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. Appl. Cryst. 22, 9–18.
Higashi, T. (1990). Auto-indexing of oscillation images. J. Appl. Cryst. 23, 253–257.
Hohlwein, D. & Wright, A. F. (1981). A low-temperature Weissenberg camera for neutrons. J. Appl. Cryst. 14, 82–84.
Holmes, K. C. & Blow, D. M. (1966). The use of diffraction in the study of protein and nucleic acid structure. New York: John Wiley.
Hope, H. (1987). Experimental organometallic chemistry. Am. Chem. Soc. Symp. Ser., No. 357. Washington, DC: American Chemical Society.
Hope, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst. B44, 22–26.
Hope, H. (1990). Crystallography of biological macromolecules at ultra-low temperatures. Ann. Rev. Biophys. Biophys. Chem. 19, 107–126.
Hope, H., Frolow, F., van Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Crystallography of ribosomal particles. Acta Cryst. B45, 190–199.
Hornstra, J. & Vossers, H. (1974). Philips Tech. Rundsch. 33, 65–78.
Hovmöller, S. (1981). A device which improves the cooling of protein crystals during X-ray data collection. J. Appl. Cryst. 14, 75.
Ihringer, J. & Küster, A. (1993). Cryostat for synchrotron powder diffraction with sample rotation and controlled gas atmosphere in the sample chamber. J. Appl. Cryst. 26, 135–137.
Jacobson, R. A. (1976). A single-crystal automatic indexing procedure. J. Appl. Cryst. 9, 115–118.
Jacobson, R. A. (1986). An orientation-matrix approach to Laue indexing. J. Appl. Cryst. 19, 283–286.
Jeffery, J. W. (1971). Methods in X-ray crystallography, pp. 149–169, 441–444. London/New York: Academic Press.
Jones, A., Bartels, K. & Schwager, P. (1977). Refinement of crystal orientation parameters. The rotation method, edited by U. W. Arndt & A. Wonacott, pp. 105–117. Amsterdam/New York/Oxford: North-Holland.
Kabsch, W. (1988a). Automatic indexing of rotation diffraction patterns. J. Appl. Cryst. 21, 67–71.
Kabsch, W. (1988b). Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Cryst. 21, 916–924.
Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800.
Kahn, R., Fourme, R., Bosshard, R., Chaimdi, M., Risler, J. L., Dideberg, O. & Wery, J. P. (1985). Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 179, 133–137.
Kennard, C. H. L. (1994). Direct observation of a crystal during X-ray data collection using a macroscope. J. Appl. Cryst. 27, 668–669.
Kim, S. (1989). Auto-indexing oscillation photographs. J. Appl. Cryst. 22, 53–60.
King, M. V. (1954). An efficient method for mounting wet protein crystals for X-ray studies. Acta Cryst. 7, 601–602.
Klug, H. P. & Alexander, L. E. (1954). X-ray diffractometer procedures for polycrystalline and amorphous materials. New York: John Wiley.
Kottke, T. & Stalke, D. (1993). Crystal handling at low temperatures. J. Appl. Cryst. 26, 616–619.
Kroeger, K. S. & Kundrot, C. E. (1994). A gas cell for collecting X-ray diffraction data from proteins. J. Appl. Cryst. 27, 609–612.
Kulpe, S. (1963). Instrument for setting single crystals from X-ray oscillation photographs. Acta Cryst. 16, 837–838.
Kulpe, S. & Dornberger-Schiff, K. (1965). A special application of the crystal setter. Acta Cryst. 18, 812–813.
Kundrot, C. E. & Richards, F. M. (1986). Collection and processing of X-ray diffraction data from protein crystals at high pressure. J. Appl. Cryst. 19, 208–213.
Lange, B. A. & Haendler, H. M. (1972). A capillary support apparatus for use in glove bags and dry boxes. J. Appl. Cryst. 5, 310.
Lange, G., Lewis, S. J., Murshudov, G. N., Dodson, G. G., Moody, P. C. E., Turkenburg, J. P., Barclay, A. N. & Brady, R. L. (1994). Crystal structure of an extracellular fragment of the rat CD4 receptor containing domains 3 and 4. Structure, 2, 469–481.
Laugier, J. & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. J. Appl. Cryst. 16, 281–283.
Leszczynski, M., Podlasin, S. & Suski, T. (1993). A 109 Pa high-pressure cell for X-ray and optical measurements. J. Appl. Cryst. 26, 1–4.
Lindley, P., Najmudin, S., Bateman, O., Slingsby, S., Myles, D., Kumaraswamy, S. & Glover, I. (1993). Structure of bovine γB-crystallin at 150 K. J. Chem. Soc. Faraday Trans. 89, 2677–2682.
Lindley, P. F. (1988). Crystallographic studies of biological macromolecules using synchrotron radiation. Chemical crystallography with pulsed neutrons and synchrotron X-rays, edited by M. A. Carrondo & G. A. Jeffrey, pp. 509–536. Dordrecht: Reidel.
Lippman, R. & Rudman, R. (1976). A mechanically refrigerated gas stream (to −120°C) and some useful accessories. J. Appl. Cryst. 9, 220–222.
Lorenz, G., Neder, R. B., Marxreiter, J., Frey, F. & Schneider, J. (1993). A mirror furnace for neutron diffraction up to 2300 K. J. Appl. Cryst. 26, 632–635.
Machin, K. J., Begg, G. S. & Isaacs, N. W. (1984). A low-temperature cooler for protein crystallography. J. Appl. Cryst. 17, 358–359.
McKinstry, H. A. (1970). Low thermal gradient high-temperature furnace for X-ray diffraction. J. Appl. Phys. 41, 5074–5079.
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B. & Wong-Ng, W. (1986). Methods of producing standard X-ray diffraction powder patterns. Powder Diffr. 1, 40–43.
Malinowski, M. (1987). A diamond high-pressure cell for X-ray diffraction on a single crystal. J. Appl. Cryst. 20, 379–382.
Marsh, D. J. & Petsko, G. A. (1973). A low-temperature device for protein crystallography. J. Appl. Cryst. 6, 76–80.
Messerschmidt, A. & Pflugrath, J. (1987). Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Cryst. 20, 306–315.
Miyata, T., Ishizawa, N., Minato, I. & Iwai, S. (1979). Gas-flame heating equipment providing temperatures up to 2600 K for the four-circle diffractometer. J. Appl. Cryst. 12, 303–305.
Moews, P. C., Sakamaki, T. & Knox, J. R. (1986). Interactive graphics for rapid indexing of oscillation films from large unit cells. J. Appl. Cryst. 19, 101–104.
Moret, R. & Dallé, D. (1994). A novel X-ray precession goniometer for use with stationary single crystals in special environments. Adaptation of a closed-cycle refrigerator. J. Appl. Cryst. 27, 637–646.
Munshi, S. K. & Murthy, M. R. N. (1986). Strategies for collecting screen-less oscillation data. J. Appl. Cryst. 19, 61–62.
Narayana, S. V. L., Weininger, M. S., Heuss, K. L. & Argos, P. (1982). A method to increase protein-crystal lifetime during X-ray exposure. J. Appl. Cryst. 15, 571–573.
Nave, C. (1995). Radiation damage in protein crystallography. In Radiation physics & chemistry, edited by P. Barnes. Oxford: Pergamon.
Neder, R. B., Frey, F. & Schulz, H. (1990). Defect structure of zirconia (Zr0.85Ca0.15O1.85) at 290 and 1550 K. Acta Cryst. A46, 799–809.
Nieman, H. F., Evans, J. C., Heal, K. M. & Powell, B. M. (1984). A technique for the preparation of low-temperature powder samples of noxious materials. J. Appl. Cryst. 17, 372.
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). A semi-empirical method of absorption correction. Acta Cryst. A24, 351–359.
Okazaki, A. & Soejima, Y. (1986). Goniometer-head attachments for crystal characterization in Weissenberg or precession geometry. J. Appl. Cryst. 19, 412–413.
Peterson, R. C. (1992). A flame-heated gas-flow furnace for single-crystal X-ray diffraction. J. Appl. Cryst. 25, 545–548.
Petsko, G. A. (1985). Flow cell construction and use. Methods in enzymology, Vol. 114, pp. 141–145. New York: Academic Press.
Phillips, G. N. Jr (1985). Crystallisation in capillary tubes. Methods in enzymology, Vol. 114, pp. 128–131. New York: Academic Press.
Pickford, M. G., Garman, E. F., Jones, E. Y. & Stuart, D. I. (1993). A design of crystal mounting cell that allows the controlled variation of humidity at the protein crystal during X-ray diffraction. J. Appl. Cryst. 26, 465–466.
Przybylska, M. (1988). A novel method of mounting a protein crystal on a surface perpendicular to the X-ray capillary. J. Appl. Cryst. 21, 272–273.
Puxley, D. C., Squire, G. D. & Bates, D. R. (1994). A new cell for in situ X-ray diffraction studies of catalysts and other materials under reactive gas atmospheres. J. Appl. Cryst. 27, 585–594.
Rao, Ch. P. (1989). Easy and economic ways of handling air-sensitive crystals for X-ray diffraction studies. J. Appl. Cryst. 22, 182–183.
Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. (1992). Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature (London), 357, 423–424.
Rayment, I. (1985). Treatment and manipulation of crystals. Methods in enzymology, Vol. 114, pp. 136–140. New York: Academic Press.
Rayment, I., Johnson, J. E. & Suck, D. (1977). A method of preventing crystal slippage in macromolecular crystallography. J. Appl. Cryst. 10, 365.
Reider, M. (1975). Precession photography: orientating crystals by means of the stereographic projection. J. Appl. Cryst. 8, 388–389.
Rink, W. J., Mathias, H. G. & Schlenoff, J. B. (1994). Hermetic sample housing for X-ray diffraction studies. J. Appl. Cryst. 27, 666–668.
Riquet, J. P. & Bonnet, R. (1979). Dépouillement par ordinator des clichés de diffraction obtenus par la méthode de Laue. J. Appl. Cryst. 12, 39–41.
Rossi, F. A. (1989). Permanent cooling of protein crystals by a collinear air flow. J. Appl. Cryst. 22, 620–622.
Rossmann, M. G. & Erickson, J. W. (1983). Oscillation photography of radiation-sensitive crystals using a synchrotron source. J. Appl. Cryst. 16, 629–636.
Rudman, R. (1976). Low-temperature X-ray diffraction: apparatus and techniques, Chap. 6, pp. 161–179. New York/London: Plenum.
Sarma, R., McKeever, B., Gallo, R. & Scuderi, J. (1986). A new method for determination of the crystal setting matrix for interpreting oscillation photographs. J. Appl. Cryst. 19, 482–484.
Sato, M., Yamamoto, M., Imada, K., Katsube, Y., Tanaka, N. & Higashi, T. (1992). A high-speed data-collection system for large-unit-cell crystals using an Imaging Plate as a detector. J. Appl. Cryst. 25, 348–357.
Schiller, C. (1985). Precise orientation of semiconductor surfaces by the back-reflection Laue technique. J. Appl. Cryst. 18, 373.
Shaham, H. (1982). A goniometer for large single crystals. J. Appl. Cryst. 15, 469.
Sparks, R. A. (1976). Crystallographic computing techniques, edited by F. R. Ahmed, K. Huml & B. Sedláček, pp. 452–467. Copenhagen: Munksgaard.
Sparks, R. A. (1982). Computational crystallography, edited by D. Sayre, pp. 1–18. Oxford University Press.
Stout, G. H. & Jensen, L. H. (1968). X-ray structure determination: a practical guide, Chap. 4, pp. 71–79. London: Macmillan.
Suh, I.-H., Suh, J.-M., Ko, T.-S., Aoki, K. & Yamazaki, H. (1988). Rationale of a quick adjustment method for crystal orientation in oscillation photography. J. Appl. Cryst. 21, 521–523.
Swanson, D. K. & Prewitt, C. T. (1986). A new radiative single-crystal diffractometer microfurnace incorporating MgO as a high-temperature cement and internal temperature calibrant. J. Appl. Cryst. 19, 1–6.
Tarling, S. E., Barnes, P. & Mackay, A. L. (1984). Simulation of industrial furnacing with powder X-ray diffraction. J. Appl. Cryst. 17, 96–99.
Teeter, M. M., Roe, S. M. & Heo, N. H. (1993). Atomic resolution (0.83 Å) crystal structure of the hydrophobic protein crambin at 130 K. J. Mol. Biol. 230, 292–311.
Teng, T. Y. (1990). Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Cryst. 23, 387–391.
Tilton, R. F. Jr (1988). A fixture for X-ray crystallographic studies of biomolecules under high gas pressure. J. Appl. Cryst. 21, 4–9.
Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. (1992). Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 31, 2469–2481.
Toyoshima, N., Hoya, H. & Ohshima, K.-I. (1991). A simple device for mounting a vacuum chamber on a four-circle diffractometer with central χ circle. J. Appl. Cryst. 24, 1074–1075.
Tsukimura, K., Sato-Sorensen, Y. & Ghose, S. (1989). A gas-flow furnace for X-ray crystallography. J. Appl. Cryst. 22, 401–405.
Usha, R., Johnson, J. E., Moras, D., Thierry, J. C., Fourme, R. & Kahn, R. (1984). Macromolecular crystallography with synchrotron radiation: collection and processing of data from crystals with a very large unit cell. J. Appl. Cryst. 17, 147–153.
Vriend, G. & Rossmann, M. G. (1987). Determination of the orientation of a randomly placed crystal from a single oscillation photograph. J. Appl. Cryst. 20, 338–343.
Vriend, G., Rossmann, M. G., Arnold, E., Luo, M., Griffith, J. P. & Moffat, K. (1986). Post-refinement of oscillation diffraction data collected at a synchrotron radiation source. J. Appl. Cryst. 19, 134–139.
Watenpaugh, K. D. (1991). Macromolecular crystallography at cryogenic temperatures. Curr. Opin. Struct. Biol. 1, 1012–1015.
Wood, R. A., Tode, G. E. & Welberry, T. R. (1985). A lathe-like crystal grinder for grinding pre-aligned crystals into cylindrical cross section. J. Appl. Cryst. 18, 371–372.
Wyckoff, H. W., Doscher, M. S., Tsernoglou, D., Inagami, T., Johnson, L. N., Hardman, K. D., Allewell, N. M., Kelley, D. M. & Richards, F. M. (1967). Design of a diffractometer and flowcell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S. J. Mol. Biol. 27, 563–578.
Xuong, Ng. H., Nielsen, C., Hamlin, R. & Anderson, D. (1985). Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer. J. Appl. Cryst. 18, 342–350.
Young, A. C. M., Dewan, J. C., Nave, C. & Tilton, R. F. (1993). Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures. J. Appl. Cryst. 26, 309–319.
Zaloga, G. & Sarma, R. (1974). New method for extending the diffraction patterns from protein crystals and preventing their radiation damage. Nature (London), 251, 551–552.
Zeppezauer, M., Eklund, H. & Zeppezauer, E. S. (1968). Micro diffusion cells for the growth of single protein crystals by means of equilibrium dialysis. Arch. Biochem. Biophys. 126, 564–573.
Zhang, X.-J. & Matthews, B. W. (1993). STRAT: a program to optimize data collection on an area detector system. J. Appl. Cryst. 26, 457–462.
Zobel, D. & Luger, P. (1990). A small 50 K device for a quarter-circle Eulerian cradle diffractometer. J. Appl. Cryst. 23, 175–179.