International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 3.5, pp. 174-175

Section 3.5.2.2. Final thinning methods

N. J. Tighe,a J. R. Fryerb and H. M. Flowerc

a42 Lema Lane, Palm Coast, FL 32137-2417, USA,bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and cDepartment of Metallurgy, Imperial College, London SW7, England

3.5.2.2. Final thinning methods

| top | pdf |

There are two main approaches to the final thinning methods: the window and disc methods (Goodhew, 1972[link], 1984[link]). The window method is simple and relatively quick and produces small thin pieces of a sample that must be supported by a grid. The disc method produces a specimen where the thinned area is protected by the thick disc rim, which makes handling the foil easier. The disc method can be automated for routine specimen preparation.

In the window technique, a sample about 0.3 mm or less in thickness and ∼10 mm square is held at the edge in a pair of metal tweezers. The tweezers and the sample edges are coated in protective lacquer to form a `window frame' about 1 mm wide. The sample is immersed in an electrolyte contained in a stainless steel beaker as a cathode. The electrolyte is stirred magnetically using a PTFE(polytetrafluorethylene)-coated stirring bar. Temperature is controlled by immersing the beaker partially in a bath of alcohol cooled with solid carbon dioxide or liquid nitrogen. The polishing rate is seldom entirely uniform and best results can be obtained by setting the specimen faces parallel to the electrolyte flow at a distance of one-quarter to one-half of the beaker radius from the centre and turning the sample through 180° periodically. Polishing is carried out until a hole appears in the sample, typically along one window-frame edge. The sample is then repositioned to induce more rapid attack on the opposing edge (e.g. if the hole appears at the top edge the foil must be inverted in the tweezers) and thinning is continued until a second perforation forms and grows just into contact with the first. The sample is removed from the electrolyte as rapidly as possible (it may be necessary to switch off the power to avoid the risk of sparks igniting alcohol-based solutions) and washed thoroughly in alcohol. The protective lacquer is peeled off and the sample is further washed and then dried on fresh paper towelling.

Electron-transparent regions can then be cut from the sample using a sharp scalpel. The cutting is accomplished by a pressing action rather than by drawing the scalpel across the sample as the latter can induce substantial damage. The thin foils are then mounted in the microscope specimen holder sandwiched between copper-mesh grids. The technique is particularly appropriate where very large thin areas are required and for magnetic specimens since the total mass of material introduced into the pole-piece gap in the microscope and the consequent image distortion is kept to a minimum.

In the disc technique, the sample is about 0.3 mm in thickness but takes the form of a disc of diameter equal to that of the microscope specimen holder, generally 3 mm. The disc is held in an insulating, typically PTFE, holder, which leaves a large fraction of each face of the disc exposed. The disc is connected electrically to the polishing circuit via a platinum wire running down the inside of the holder and connected to a ring of platinum foil in contact with the sample disc. The sample is immersed in the electrolyte, which contains two jets through which electrolyte is pumped onto the exposed disc faces. The electrolyte flow produces more rapid dissolution at the centre of the disc than at the edges and results in the formation of a central hole. The cross-sectional profile of the thinned section is affected strongly by the size of the jet orifices and electrolyte flow rate, which requires optimization for each electrolyte/metal combination. The hole may be detected by eye using a glass container rather than a stainless steel beaker for the electrolyte with a suitable cathode immersed in it. The greatest advantage of the method, however, lies in its ready automation.

The holder and jet assembly can be mounted inside a light-tight container with a light directed onto one disc face and a photosensor onto the opposite face. Via suitable circuitry, the sensitivity of the detector can be adjusted to detect a hole and to cut off the polishing power supply automatically. Several such automated thinners are available commercially and provide a good means of routinely preparing thin foils.

Thin foils should always be stored in a dry dust-free environment to minimize surface reaction with the atmosphere and contamination of the thin areas. Foils of reactive metals (e.g. Mg or Fe alloys) will have very limited storability whereas some metals can be stored for years with no loss in foil quality either as a result of their inactivity or as a consequence of the protective nature of the thin air-formed oxide film (e.g. Ti).

References

Goodhew, P. J. (1972). Specimen preparation in materials science. Practical methods in electron microscopy, edited by A. M. Glauert, pp. 3–180. Amsterdam: North-Holland.
Goodhew, P. J. (1984). Specimen preparation for transmission electron microscopy of materials. Royal Microscopy Society Handbook. Oxford: Royal Microscopy Society.








































to end of page
to top of page