International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 4.3, pp. 259-429
https://doi.org/10.1107/97809553602060000593

Chapter 4.3. Electron diffraction

C. Colliex,a J. M. Cowley,b S. L. Dudarev,c M. Fink,d J. Gjønnes,e R. Hilderbrandt,f A. Howie,g D. F. Lynch,h L. M. Peng,i G. Ren,j A. W. Ross,d V. H. Smith Jr,k J. C. H. Spence,l J. W. Steeds,m J. Wang,k M. J. Whelanc and B. B. Zvyaginn

aLaboratoire Aimé Cotton, CNRS, Campus d'Orsay, Bâtiment 505, F-91405 Orsay CEDEX, France,bDepartment of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA,cDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, England,dDepartment of Physics, The University of Texas at Austin, Austin, TX 78712, USA,eDepartment of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo, Norway,fChemistry Division, Room 1055, The National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, USA,gCavendish Laboratory, Madingley Road, Cambridge CB3 0HE, England,hCSIRO Division of Materials Science & Technology, Private Bag 33, Rosebank MDC, Clayton, Victoria 3169, Australia,iDepartment of Electronics, Peking University, Beijing 100817, People's Republic of China,jBeijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, PO Box 2724, Beijing 100080, People's Republic of China,kDepartment of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6,lDepartment of Physics, Arizona State University, Tempe, AZ 85287, USA,mH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, England, and nInstitute of Ore Mineralogy, Akad. Nauk Russia, Staromonetny 35, 109017 Moscow, Russia

References

Ackermann, I. (1948). Observations on the dynamical interference phenomena in convergent electron beams. II. Ann. Phys. (Leipzig), 2, 41–54.
Ahn, C. C. & Krivanek, O. L. (1982). An EELS atlas. Available from Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, USA.
Ahn, C. C. & Rez, P. (1985). Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy, 17, 105–116.
Alexander, H., Spence, J. C. H., Shindo, D., Gottschalk, H. & Long, N. (1986). Forbidden reflection lattice imaging for the determination of kink densities on partial dislocations. Philos. Mag. A53, 627–643.
Altarelli, M. & Smith, S. Y. (1974). Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment and generalization. Phys. Rev. B, 9, 1290–1298.
Andersson, B. (1975). Structure analysis of the γ-phase in the vanadium oxide system by electron diffraction studies. Acta Cryst. A31, 63–70.
Ando, Y., Ichimiya, A. & Uyeda, R. (1974). A determination of values and signs of the 111 and 222 structure factors of silicon. Acta Cryst. A30, 600–601.
Anstis, G. R., Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1973). n-Beam lattice images. III. Upper limits of ionicity in W4Nb26P77. Acta Cryst. A29, 138–147.
d'Anterroches, C. & Bourret, A. (1984). Atomic structure of [011] and [001] near-coincident tilt boundaries in germanium and silicon. Philos. Mag. A49, 783–807.
Arnesen, S. P. & Seip, H. M. (1966). Studies on the failure of the first Born approximation in electron diffraction. V. Molybdenum- and tungsten hexacarbonyl. Acta Chem. Scand. 20, 2711–2727.
Barrett, C. S. & Massalski, T. B. (1980). Structure of metals, 3rd revised ed. Oxford: Pergamon Press.
Bartell, L. S. (1975). Modification of Glauber theory for dynamic scattering of electrons by polyatomic molecules. J. Chem. Phys. 63, 3750–3755.
Bartell, L. S. & Brockway, L. O. (1953). The investigation of electron distribution in atoms by electron diffraction. Phys. Rev. 90, 833–838.
Bartell, L. S. & Gavin, R. M. Jr (1964). Effects of electron correlation in X-ray and electron diffraction. J. Am. Chem. Soc. 86, 3493–3498.
Bartell, L. S. & Miller, B. (1980). Extension of Glauber theory to account for intratarget diffraction in multicenter scattering. J. Chem. Phys. 72, 800–807.
Bartell, L. S. & Wong, T. C. (1972). Three-atom scattering in gas-phase electron diffraction: a tractable limiting case. J. Chem. Phys. 56, 2364–2367.
Batson, P. E. (1986). High energy resolution electron spectrometer for a 1 nm spatial analysis. Rev. Sci. Instrum. 57, 43–48.
Batson, P. E. (1987). Spatially resolved interband spectroscopy. Physical aspects of microscopic characterization of materials, edited by J. Kirschner, K. Murata & J. A. Venables, pp. 189–195. Scanning Microscopy, Suppl. I.
Batson, P. E. (1989). High resolution energy-loss spectroscopy. Ultramicroscopy, 28, 32–39.
Batson, P. E. & Silcox, J. (1983). Experimental energy loss function, [Im[-1/\varepsilon(q,\omega)]], for aluminium. Phys. Rev. B, 27, 5224–5239.
Berger, S. D. & McMullan, D. (1989). Parallel recording for an electron spectrometer on a scanning transmission electron microscope. Ultramicroscopy, 28, 122–125.
Bernal, J. D. (1926). On the interpretation of X-ray single-crystal rotation photographs. Proc. R. Soc. London Ser. A, 113, 117–160.
Bethe, H. A. (1928). Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. Leipzig, 87, 55–129.
Bethe, H. A. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. (Leipzig), 5, 325–400.
Bianconi, A., Fritsch, E., Calas, G. & Petiau, J. (1985). X-ray absorption near edge structure of 3d transition elements in tetrahedral coordination: the effect of bond length variation. Phys. Rev. B, 32, 4292–4295.
Biggs, F., Mendelsohn, L. B. & Mann, J. B. (1975). Hartree–Fock Compton profiles for the elements. At. Data Nucl. Data Tables, 16, 210–309.
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1983). Direct imaging of semiconductor surfaces. Phys. Rev. Lett. 50, 120–123.
Bird, D. M. (1990). Absorption in high-energy electron diffraction from non-centrosymmetrical crystals. Acta Cryst. A46, 208–214.
Bird, D. M. & King, Q. A. (1990). Absorptive form factors for high-energy electron diffraction. Acta Cryst. A46, 202–208.
Bird, D. M. & Saunders, M. (1992). Inversion of convergent-beam electron diffraction patterns. Acta Cryst. A48, 555–562.
Blackman, M. (1939). On the intensities of electron diffraction rings. Proc. R. Soc. London Ser. A, 173, 68–82.
Blake, R. G., Jostsons, A., Kelly, P. M. & Napier, J. G. (1978). The determination of extinction distances and anomalous absorption coefficients by scanning electron microscopy. Philos. Mag. A37, 1–16.
Boersch, H. (1954). Experimentelle Bestimmung der Energieverteilung in thermisch ausgelosten Elektronenstrahlen. Z. Phys. 139, 115–146.
Bonham. R. A. (1965a). Multiple elastic intramolecular scattering in gas electron diffraction. J. Chem. Phys. 43, 1103–1109.
Bonham, R. A. (1965b). Corrections to the incoherent scattering factor for electrons and X-rays. J. Chem. Phys. 43, 1460–1464.
Bonham, R. A. (1966). Dynamic effects in gas electron diffraction. Trans. Am. Crystallogr. Assoc. 2, 165–172.
Bonham, R. A. (1967). Some new relations connecting molecular properties and electron and X-ray diffraction intensities. J. Phys. Chem. 71, 856–862.
Bonham, R. A. & Cox, H. L. Jr (1967). 40-kV electron scattering fom Ne, Ar, Kr, and Xe measured by the sector-microphotometer electron-diffraction method. J. Chem. Phys. 47, 3508–3517.
Bonham, R. A. & Fink, M. (1974). High energy electron scattering, Chaps. 5 and 6. New York: Van Nostrand Reinhold.
Bonham. R. A. & Iijima, T. (1965). Preliminary electron-diffraction study of H2 at small scattering angles. J. Chem. Phys. 42, 2612–2614.
Bonham, R. A. & Su, L. S. (1966). Use of Hellman–Feynman and hyperviral theorems to obtain anharmonic vibration–rotation expectation values and their application to gas diffraction. J. Chem. Phys. 45, 2827–2831.
Breitenstein, M., Endesfelder, A., Meyer, H. & Schweig, A. (1984). CI calculations of electron-scattering cross sections for some linear molecules. Chem. Phys. Lett. 108, 430–434.
Breitenstein, M., Endesfelder, A., Meyer, H., Schweig, A. & Zittlau, W. (1983). Electron correlation effects in electron scattering cross-section calculations of N2. Chem. Phys. Lett. 97, 403–409.
Breitenstein, M., Mawhorter, R. J., Meyer, H. & Schweig, A. (1984). Theoretical study of potential-energy differences from high-energy electron scattering cross sections of CO2. Phys. Rev. Lett. 53, 2398–2401.
Breitenstein, M., Mawhorter, R. J., Meyer, H. & Schweig, A. (1986). Vibrational effects on electron–molecule scattering for polyatom in the first Born approximation: H2O. Mol. Phys. 57, 81–88.
Bross, H. (1978a). Anisotropy of plasmon dispersion in Al. Phys. Lett. A, 64, 418–420.
Bross, H. (1978b). Pseudopotential theory of the dielectric function of Al – the volume plasmon dispersion. J. Phys. F, 8, 2631–2649.
Brydson, R., Sauer, H., Engle, W., Thomas, J. M., Zeitler, E., Kosugi, N. & Kuroda, H. (1989). Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. J. Phys. Condens. Matter, 1, 797–812.
Budinger, T. F. & Glaeser, R. M. (1976). Measurement of focus and spherical aberration of an electron microscope objective lens. Ultramicroscopy, 2, 31–41.
Bunge, C. F., Barrientos, J. & Bunge, A. V. (1993). Roothaan–Hartree–Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values. At. Data Nucl. Data Tables, 53, 113–162.
Bunge, H.-J. (1982). Texture analysis in materials science. London: Butterworth.
Bunyan, P. J. (1963). The effect of multiple elastic scattering in gas electron diffraction. Proc. Phys. Soc. 82, 1051–1057.
Buxton, B. F. (1976). Bloch waves in high order Laue zone effects in high energy electron diffraction. Proc. R. Soc. London Ser. A, 300, 335–361.
Castaing, R. & Henry, L. (1962). Filtrage magnétique des vitesses en microscopie électronique. C. R. Acad. Sci. Paris Sér. B, 255, 76–78.
Chen, C. H. & Silcox, J. (1971). Detection of optical surface guided modes in thin graphite films by high energy electron scattering. Phys. Rev. Lett. 35, 390–393.
Cherns, D. (1974). Direct resolution of surface steps by transmission electron microscopy. Philos. Mag. 30, 549–557.
Cockayne, D. J. H. & Gronsky, R. (1981). Lattice fringe imaging of modulated structures. Philos. Mag. A44, 159–175.
Coffman, D., Fink, M. & Wellenstein, H. (1985). Elastic small-angle electron scattering by He, Ne, and Ar at 35 keV. Phys. Rev. Lett. 55, 1392–1394.
Colliex, C. (1984). Electron energy loss spectroscopy in the electron microscope. Advances in optical and electron microscopy, Vol. 9, edited by V. E. Cosslett & R. Barer, pp. 65–177. London: Academic Press.
Colliex, C. (1985). An illustrated review on various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy, 18, 131–150.
Colliex, C., Gasgnier, M. & Trebbia, P. (1976). Analysis of the electron excitation spectra in heavy rare earch metals, hydrides and oxides. J. Phys. (Paris), 27, 397–406.
Colliex, C., Manoubi, T., Gasgnier, M. & Brown, L. M. (1985). Near edge structures on EELS core-loss edges. Scanning Electron Microsc. 2, 489–512.
Colliex, C., Maurice, J. L. & Ugarte, D. (1989). Frontiers of analytical electron microscopy with special reference to cluster and interface problems. Ultramicroscopy, 29, 31–43.
Coulthard, M. A. (1967). A relativistic Hartree–Fock atomic field calculation. Proc. Phys. Soc. 91, 44–49.
Cowley, J. M. (1959). The electron-optical imaging of crystal lattices. Acta Cryst. 12, 367–375.
Cowley, J. M. (1961). Diffraction intensities from bent crystals. Acta Cryst. 14, 920–926.
Cowley, J. M. (1969). Image contrast in transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59.
Cowley, J. M. (1975). Diffraction physics. New York: North-Holland.
Cowley, J. M. (1981). Diffraction physics, 2nd ed. New York: North-Holland.
Cowley, J. M. (1988). Electron microscopy of crystals with time-dependent perturbations. Acta Cryst. A44, 847–853.
Cowley, J. M. (1992). Coherent convergent beam diffraction. Electron diffraction techniques, Vol. 1, edited by J. M. Cowley, pp. 439–464. Oxford University Press.
Cowley, J. M. (1994). Applications of electron holography. In Handbook of advanced materials testing, edited by N. P. Cheremisinoff & P. N. Cheremisinoff. New York: Marcel Dekker, Inc.
Cowley, J. M. & Iijima, S. (1972). Electron microscope image contrast for thin crystals. Z. Naturforsch. Teil A, 27, 445–451.
Cowley, J. M. & Moodie, A. F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619.
Cowley, J. M. & Moodie. A. F. (1960). Fourier images IV: the phase grating. Proc. Phys. Soc. (London), 76, 378–384.
Cowley, J. M., Spence, J. C. & Smirnov, V. V. (1997). The enhancement of electron microscope resolution by the use of atomic focusers. Ultramicroscopy, 68, 135–148.
Craven, A. J. & Buggy, T. W. (1981). Design considerations and performance of an analytical STEM. Ultramicroscopy, 7, 27–37.
Crewe, A. V. (1977a). Post specimen optics in the STEM. I. General information. Optik (Stuttgart), 47, 299–312.
Crewe, A. V. (1977b). Post specimen optics in the STEM. II. Optik (Stuttgart), 47, 371–380.
Crewe, A. V. & Wall, J. (1970). A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393.
Cromer, D. T. & Waber, J. T. (1974). Atomic scattering factors for X-rays. In International tables for X-ray crystallography, Vol. IV, Section 2.2. Birmingham: Kynoch Press.
Daberkow, I., Herrmann, K.-H., Liu, L. & Rau, W. (1991). Performance of electron image converters with YAG and CCD. Ultramicroscopy, 38, 215–224.
Daniels, J., Festenberg, C. V., Raether, H. & Zeppenfeld, K. (1970). Optical constants of solids by electron spectroscopy. Springer tracts in modern physics, Vol. 54, pp. 78–135. New York: Springer-Verlag.
Desseaux, J., Renault, A. & Bourret, A. (1977). Multibeam lattice images from germanium oriented in (001). Philos. Mag. 35, 357–363.
Disko, M. M., Krivanek, O. L. & Rez, P. (1982). Orientation dependent extended fine structure in EELS. Phys. Rev. B, 25, 4252–4255.
Dorset, D. L. (1991). Is electron crystallography possible? The direct determination of organic crystal structures. Ultramicroscopy, 38, 23–40.
Dorset, D. L. (1994). Electron crystallography of organic molecules. Adv. Electron. Electron Phys. 88, 111–197.
Dorset, D. L. (1995). Editor. Structural electron crystallography. New York/London: Plenum Press.
Dorset, D. L., Jap, B. K., Ho, M. M. & Glaeser, R. M. (1979). Direct phasing of electron diffraction data from organic crystals: the effect of n-beam dynamical scattering. Acta Cryst. A35, 1001–1009.
Dorset, D. L., McCourt, M. P., Fryer, J. R., Tivol, W. F. & Turner, J. N. (1994). The tangent formula in electron crystallography. Phase determination of copper perchlorophthalocyanine. Microsc. Soc. Am. Bull. 24, 398–404.
Downing, K. H., Meisheng, H., Wenk, H. R. & O'Keefe, M. A. (1990). Resolution of oxygen atoms in staurolite by three dimensional transmission electron microscopy. Nature (London), 348, 525.
Doyle, P. A. & Turner, P. S. (1968). Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Cryst. A24, 390–397.
Durham, J. P., Pendry, J. B. & Hodges, C. H. (1981). XANES: Determination of bond angles and multi-atom correlations in ordered and disordered systems. Solid State Commun. 8, 159–162.
Egerton, R. F. (1978). Formulae for light element analysis by electron energy loss spectrometry. Ultramicroscopy, 3, 243–351.
Egerton, R. F. (1979). K-shell ionization cross sections for use in microanalysis. Ultramicroscopy, 4, 169–179.
Egerton, R. F. (1980a). The use of electron lenses between a TEM specimen and an electron spectrometer. Optik (Stuttgart), 56, 363–376.
Egerton, R. F. (1980b). Design of an aberration-corrected electron spectrometer for the TEM. Optik (Stuttgart), 57, 229–242.
Egerton, R. F. (1986). Electron energy loss spectroscopy in the electron microscope. New York/London: Plenum.
Egerton, R. F. & Crozier, P. A. (1987). A compact parallel recording. J. Microsc. 148, 157.
Endoh, H., Hashimoto, H. & Makita, Y. (1994). Theoretical and observed images of impurity atoms formed by L-shell ionization. Ultramicroscopy, 56, 108–120.
Enge, H. A. (1967). Deflecting magnets. Focusing of charged particles, Vol. 2, edited by A. Septier, pp. 203–264. New York: Academic Press.
Engel, W., Sauer, H., Zeitler, E., Brydson, R., Williams, B. G. & Thomas, J. M. (1988). Electron energy loss spectroscopy and the crystal chemistry of rhodizite. J. Chem. Soc. Faraday Trans. 1, 84, 617–629.
Epstein, J. & Stewart, R. F. (1977). X-ray and electron scattering from diatomic molecules in the first Born approximation. J. Chem. Phys. 66, 4057–4064.
Fano, U. (1961). Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1966–1978.
Fejes, P. L. (1977). Approximations for the calculation of high-resolution electron-microscope images of thin films. Acta Cryst. A33, 109–113.
Fields, P. M. & Cowley, J. M. (1978). Computed electron microscope images of atomic defects in f.c.c. metals. Acta Cryst. A34, 103–112.
Fink, J. & Kisker, E. (1980). A method for rapid calculation of electron trajectories in multielement electrostatic cylinder lenses. Rev. Sci. Instrum. 51, 918–920.
Fink, J. & Leising, G. (1986). Momentum-dependent dielectric functions of oriented trans-polyacetylene. Phys. Rev. B, 34, 5320–5328.
Fink, J., Müller-Heinzerling, T., Pflüger, J., Scheerer, B., Dischler, B., Koidl, P., Bubenzer, A. & Sah, R. E. (1984). Investigation of hydrocarbon-plasma-generated carbon films by EELS. Phys. Rev. B, 30, 4713–4718.
Fink, M., Bonham, R. A., Lee, J. S. & Ng, E. W. (1969). Large angle scattering from N2 with 40 keV electrons. Chem. Phys. Lett. 4, 347–351.
Fink, M. & Kessler, J. (1966). Absolute Wirkungsquerschnitte für Elektronenstreuung um Kleine Winkel. Experimente sum Gültigkeitsbereich der Ersten Bornschen Näherung. Z. Phys. 196, 1–15.
Fischer, D. W. (1970). Molecular orbital interpretation of the soft X-ray L23 emission and absorption spectra from some titanium and vanadium compounds. J. Appl. Phys. 41, 3561–3569.
Fitzgerald, J. D. & Johnson, A. W. S. (1984). A simplified method of electron microscope voltage measurement. Ultramicroscopy, 12, 231–236.
Fox, A. G. & Fisher, R. M. (1988). A summary of low-angle X-ray atomic scattering factors measured by the critical voltage effect in high energy electron diffraction. Aust. J. Phys. 41, 461–468.
Fox, A. G., O'Keefe, M. A. & Tabbernor, M. A. (1989). Relativistic Hartree–Fock X-ray and electron atomic scattering factors at high angles. Acta Cryst. A45, 786–793.
Fox, A. G. & Tabbernor, M. A. (1991). The bonding charge density of [\beta]′NiAl′′. Acta Metall. 39, 669–678.
Frank, J. (1975). A practical resolution criterion in optics and electron microscopy. Optik (Stuttgart), 43, 25–34.
Frank, J. (1980). The role of correlation techniques in computer image processing. Computer processing of electron microscope images. Topics in current physics, Vol. 13, edited by P. W. Hawkes, p. 187. Berlin/Heidelberg/New York: Springer.
Fryer, J. R. & Gilmore, C. J. (1992). Structure determination by electron crystallography. Trans. Am. Crystallogr. Assoc. 28, 57–75.
Fu, Z. Q., Huang, D. X., Li, F. H., Li, J. Q., Zhao, Z. X., Cheng, T. Z. & Fan, H. F. (1994). Incommensurate modulation in minute crystals revealed by combining high-resolution electron microscopy and electron diffraction. Ultramicroscopy, 54, 229–236.
Fujiwara, K. (1959). Application of higher-order Born approximation to multiple elastic scattering of electrons in crystals. J. Phys. Soc. Jpn, 14, 1513–1524.
Fujiwara, K. (1961). Relativistic dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 16, 2226–2238.
Fujiyoshi, Y., Ishizuka, K., Tsuji, M., Kobayashi, T. & Uyeda, N. (1983). Charge density distribution from high resolution molecular images. Proceedings of the 17th International Conference on High Voltage Electron Microscopy, p. 21.
Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H. & Harada, Y. (1991). Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy, 38, 241–251.
Fukuhara, A. (1966). Many-ray approximation in the dynamical theory of electron diffraction. J. Phys. Soc. Jpn, 21, 2645–2662.
Gabor, D. (1948). A new microscope principle. Nature (London), 161, 777–778.
Gabor, D. (1949). Microscopy of reconstructed wavefronts. Proc. R. Soc. London Ser. A, 197, 454–487.
Geiger, J. (1964). Streuung von 25 keV-Elektronen an Gasen. II. Streuung an Neon, Argon, Krypton und Xenon. Z. Phys. 177, 138–145.
Gibbons, P. C., Ritsko, J. J. & Schnatterly, S. E. (1975). Inelastic electron scattering spectrometer. Rev. Sci. Instrum. 46, 1546–1554.
Gjønnes, J. (1964). A dynamic effect in electron diffraction by molecules. Acta Cryst. 17, 1075–1076.
Gjønnes, J. & Høier, R. (1971). The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst. A27, 313–316.
Gjønnes, K. & Bøe, N. (1994). Refinement of temperature factors and charge distributions in YBa2Cu3O7 and YBa2(Cu,Co)3O7 from CBED intensities. Micron Microsc. Acta, 25, 29–44.
Glauber, R. & Schomaker, V. (1953). The theory of electron diffraction. Phys. Rev. 89, 667–671.
Glazer, J., Ramesh, R., Hilton, M. R. & Sarikaya, M. (1985). Comparison of convergent beam electron diffraction methods for determination of foil thickness. Philos. Mag. A52, 59–63.
Goodman, P. (1976). Examination of the graphite structure using convergent-beam electron diffraction. Acta Cryst. A32, 793–798.
Goodman, P. & Lehmpfuhl, G. (1967). Electron diffraction study of MgO h00 systematic interactions. Acta Cryst. 22, 14–24.
Goodman, P. & Moodie, A. F. (1974). Numerical evaluation of N-beam wave-functions in electron scattering by the multislice method. Acta Cryst. A30, 280–290.
Grinton, G. R. & Cowley, J. M. (1971). Phase and amplitude contrast in electron micrographs of biological materials. Optik (Stuttgart), 34, 221–233.
Gritsaenko, G. S., Zvyagin, B. B., Boyarskaya, R. V., Gorshkov, A. I., Samotoin, N. D. & Frolova, K. E. (1969). Methods of electron microscopy of minerals. Moscow: Nauka.
Grunes, L. A., Leapman, R. D., Wilker, C. N., Hoffmann, R. & Kunz, A. B. (1982). Oxygen K near-edge fine structure: an electron energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B, 25, 7157–7173.
Guinier, A. (1956). Théorie et technique de la radiocristallographie, 2nd ed. Paris: Dunod.
Hagemann, H. J., Gudat, W. & Kunz, C. (1975). Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 65, 742–748.
Haider, M. & Zach, J. (1995). Multipole correctors. Proceedings of Microscopy and Microanalysis, edited by G. Bailey, pp. 596–567. New York: Jones and Bigell.
Hanson, H. P. (1962). Experimental f values and electron diffraction amplitudes for bromine. J. Chem. Phys. 36, 1043–1049.
Hartl, W. A. M. (1966). Die Filterlinse als Monochromator für schnelle Elektronen. Z. Phys. 191, 487–502.
Hashimoto, H., Mannami, M. & Naiki, T. (1961). Theory of lattice images. Philos. Trans. R. Soc. London, 253, 459–489.
Heine, V. (1980). Electronic structure from the point of view of the local atomic environment. Solid State Phys. 35, 1–127.
Heisenberg, W. (1931). Über die Inkohärente Streuung von Röntgenstrahlen. Phys. Z. 32, 737–740.
Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature, 257, 28–32.
Hilderbrandt, R. L. & Kohl, D. A. (1981). A variational treatment of the effects of vibrational anharmonicity on gas-phase electron diffraction intensities. Part I. Molecular scattering function. J. Mol. Struct. Theochem. 85, 25–36.
Hillier, J. & Baker, R. F. (1944). Microanalysis by means of electrons. J. Appl. Phys. 15, 663–675.
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1977a). Electron microscopy of thin crystals. New York: Krieger.
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1977b). Electron microscopy of thin crystals, p. 190. London: Butterworth.
Hitchcock, A. P. (1982). Bibliography of atomic and molecular inner-shell excitation studies. J. Electron Spectrosc. Relat. Phenom. 25, 245–275. [Updated copies of this bibliography are available from the author on request.]
Hoerni, J. A. (1956). Multiple elastic scattering in electron diffraction by molecules. Phys. Rev. 102, 1530–1533.
Hofer, F., Golob, P. & Brunegger, A. (1988). EELS quantification of the elements Sr to W by means of M45 edges. Ultramicroscopy, 25, 81–84.
Höhberger, H. J., Otto, A. & Petri, E. (1975). Plasmon resonance in Al, deviations from quadratic dispersion observed. Solid State Commun. 16, 175–179.
Høier, R. (1972). Displaced lines in Kikuchi patterns. Phys. Status Solidi A, 11, 597–610.
Høier, R., Bakken, L. N., Marthinsen, K. & Holmestad, R. (1993). Structure factor determination in non-centrosymmetrical crystals by a two-dimensional CBED-based multi-parameter refinement method. Ultramicroscopy, 49, 159–170.
Holmestad, R., Weickenmeier, A. L., Zuo, J. M., Spence, J. C. H. & Horita, Z. (1993). Debye–Waller factor measurement in TiAl from HOLZ reflections. Electron microscopy and analysis 1993, pp. 141–144. Bristol: IOP Publishing.
Horiuchi, S. (1982). Reduction in a niobium tungsten bronze. J. Appl. Cryst. 15, 323–329.
Horota, F., Kakuta, N. & Shibata, S. (1981). High energy electron scattering by diborane. J. Phys. B, 14, 3299–3304.
Howie, A. (1963). Inelastic scattering of electrons by crystals. I. The theory of small angle inelastic scattering. Proc. R. Soc. London Ser. A, 271, 268–287.
Howie, A. (1979). Image contrast and localized signal selection techniques. J. Micros. (Oxford), 117, 11–23.
Howie, A. & Basinski, Z. S. (1968). Approximations of the dynamical theory of diffraction contrast. Philos. Mag. 17, 1039–1063.
Humphreys, C. J. & Hirsch, P. B. (1968). Absorption parameters in electron diffraction theory. Philos. Mag. 18, 115–122.
Ibach, H. & Mills, D. L. (1982). Electron energy-loss spectroscopy and surface vibrations. New York: Academic Press.
Ibers, J. A. (1958). Atomic scattering amplitudes for electrons. Acta Cryst. 11, 178–183.
Iijima, S. (1977). High resolution electron microscopy of phase objects: observation of small holes and steps on graphite crystals. Optik (Stuttgart), 47, 437–452.
Iijima, T., Bonham, R. A. & Ando, T. (1963). The theory of electron scattering from molecules. I. Theoretical development. J. Phys. Chem. 67, 1472–1474.
Inokuti, M. (1971). Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Rev. Mod. Phys. 43, 297–344.
Inokuti, M., Itikawa, Y. & Turner, J. E. (1978). Addenda: Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Rev. Mod. Phys. 50, 23–26.
Inokuti, M. (1979). Electron scattering cross sections pertinent to electron microscopy. Ultramicroscopy, 3, 423–427.
International Tables for Crystallography (2001). Vol. B, 2nd ed. Dordrecht: Kluwer Academic Publishers.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Isaacson, M. (1972a). Interaction of 24 keV electrons with the nucleic acid bases, adenine, thymine and uracil. I. Outer shell excitation. J. Chem. Phys. 56, 1803–1812.
Isaacson, M. (1972b). Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine and uracil. II. Inner shell excitation and inelastic scattering cross section. J. Chem. Phys. 56, 1813–1818.
Isaacson, M. & Johnson, D. (1975). The microanalysis of light elements using transmitted energy-loss electrons. Ultramicroscopy, 1, 33–52.
Ishizuka, K. (1982). Multislice formula for inclined illumination. Acta Cryst. A38, 773–779.
Janssen, R. W. & Sankey, O. F. (1987). Ab initio linear combination of pseudo-atomic orbital scheme for the electronic properties of semiconductors. Results for ten materials. Phys. Rev. B, 36, 6520–6531.
Jap, B. K. & Glaeser, R. M. (1978). The scattering of high energy electrons. Acta Cryst. A34, 94–102.
Johnson, D. E. (1979). Basic aspects of energy-loss spectrometer systems. Ultramicroscopy, 3, 361–365.
Johnson, D. E. (1980). Post specimen optics for energy loss spectrometry. Scanning Electron. Microsc. 1, 33–40.
Johnson, D. W. (1975). A Fourier method for numerical Kramers–Kronig analysis. J. Phys. A, 8, 490–495.
Johnson, D. W. & Spence, J. C. H. (1974). Determination of the single scattering probability distribution from plural scattering data. J. Phys. D, 7, 771–780.
Jones, P. M., Rackham, G. M. & Steeds, J. W. (1977). High-order Laue zone electron diffraction. Proc. R. Soc. London Ser. A, 354, 192–222.
Jouffrey, B., Sevely, J., Zanchi, G. & Kihn, Y. (1985). Characteristic energy losses with high energy electrons up to 2.5 MeV. Scanning Electron Microsc. 3, 1063–1070.
Kakudo, M. & Kasai, N. (1972). X-ray diffraction by polymers. Tokyo: Kodanska; Amsterdam: Elsevier.
Kambe, K. (1957). Study of simultaneous reflections in electron diffraction by crystals. J. Phys. Soc. Jpn, 12, 13–36.
Kambe, K. (1982). Visualization of Bloch waves of high energy electrons in high resolution electron microscopy. Ultramicroscopy, 10, 223–228.
Karle, I. L. & Karle, J. (1950). Internal motion and molecular structure studies by electron diffraction. III. Structure of CH2CF2 and CF2CF2. J. Chem. Phys. 18, 963–971.
Keil, P. (1968). Elektronen-Energieverlustmessungen und Berechnung optischer Konstanten. I. Festes Xenon. Z. Phys. 214, 251–265.
Kelley, M. H. & Fink, M. (1982a). The molecular structure of dimolybdenum tetraacetate. J. Chem. Phys. 76, 1407–1416.
Kelley, M. H. & Fink, M. (1982b). The temperature dependence of the molecular structure parameters in SF6. J. Chem. Phys. 77, 1813–1817.
Kelly, P. M., Jostsons, A., Blake, R. G. & Napier, J. G. (1975). The determination of foil thickness by scanning transmission electron microscopy. Phys. Status Solidi A, 31, 771–780.
Kessler, J. (1959). Einzelstreuung Mittelschneller Elektronen an Schweren Atomkernen. Z. Phys. 155, 350–367.
Ketkar, S. N. & Fink, M. (1985). Structure of dichromium tetraacetate by gas-phase electron diffraction. J. Am. Chem. Soc. 107, 338–340.
Killat, U. (1974). Optical properties of C6H12, C6H10, C6H8, C6H6, C7H8, C6H5Cl and C5H5N in the solid and gaseous state derived from electron energy losses. J. Phys. C, 7, 2396–2408.
Kimura, M., Schomaker, V., Smith, D. & Weinstock, B. (1968). Electron-diffraction investigation of the hexafluorides of tungsten, osmium, iridium, uranium, neptunium, and plutonium. J. Chem. Phys. 48, 4001–4012.
Kirkland, A., Saxton, W., Chau, K., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis. Ultramicroscopy, 57, 355–374.
Klemperer, O. (1965). Electron beam spectroscopy. Rev. Prog. Phys. 28, 77–111.
Kliewer, K. & Fuchs, R. (1974). Theory of dynamical properties of dielectric surfaces. Adv. Chem. Phys. 27, 355–541.
Kobayashi, T., Fujiyoshi, Y. & Uyeda, N. (1982). The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films. Acta Cryst. A38, 356–362.
Kogiso, M. & Takahashi, H. (1977). Group-theoretical method in the many-beam theory in electron diffraction. J. Phys. Soc. Jpn, 42, 223–229.
Kohl, D. A. & Arvedson, M. (1980). Elastic electron scattering from molecular potentials. J. Chem. Phys. 73, 3818–3822.
Kohl, D. A. & Bartell, L. S. (1969). Electron densities from gas-phase electron diffraction intensities. II. Molecular Hartree–Fock cross sections. J. Chem. Phys. 51, 2896–2904.
Kohl, D. A. & Bonham, R. A. (1967). Effect of bond formation on electron scattering cross sections for molecules. J. Chem. Phys. 47, 1634–1646.
Kohl, D. A. & Hilderbrandt, R. L. (1981). A variational treatment of the effects of vibrational anharmonicity on gas-phase electron diffraction intensities. Part II. Temperature dependence. J. Mol. Struct. Theochem. 85, 325–335.
Koike, H., Kobayashi, K., Ozawa, S. & Yagi, K. (1989). High resolution reflection electron microscopy of Si(111) 7 × 7 surfaces using a high voltage electron microscope. Jpn. J. Appl. Phys. 28, 861–865.
Komoda, T. (1964). On the resolution of the lattice image in the electron microscope. Optik (Stuttgart), 21, 94–110.
Krahl, D. & Herrmann, K.-H. (1980). Experiments with an imaging energy filter in the CTEM. Micron, 11, 287–289.
Krahl, D., Pätzold, H. & Swoboda, M. (1990). An aberration-minimized imaging energy filter of simple design. Proceedings of 12th International Conference on Electron Microscopy 1990, Vol. 2, pp. 60–61.
Krinary, G. A. (1975). On the possibilities to use oriented specimens for recording of non-basal X-ray reflexions of fine-grained layer silicates. Crystal chemistry of minerals and geological problems, pp. 132–138. Moscow: Nauka.
Krivanek, O. L. (1976). A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik (Stuttgart), 45, 97–101.
Krivanek, O. L., Ahn, C. C. & Keeney, R. B. (1987). Parallel detection electron spectrometer using quadrupole lens. Ultramicroscopy, 22, 103–115.
Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A. & Brown, L. M. (1997). Aberration correction in the STEM. Proc EMAG 1997, edited by S. McVitie. London: Institute of Physics.
Krivanek, O. L., Gubbens, A. J., Dellby, N. & Meyer, C. E. (1991). Design and first applications of a post-column imaging filter. Microsc. Microanal. Microstruct. (France), 3, 187–199.
Krivanek, O. L., Manoubi, T. & Colliex, C. (1985). Sub 1 eV resolution EELS at energy losses greater than 1 keV. Ultramicroscopy, 18, 155–158.
Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in HREM. Ultramicroscopy, 49, 95–108.
Krivanek, O. L., Mooney, P. E., Fan, G. Y. Leber, M. L. & Meyer, C. E. (1991). Slow-scan CCD cameras for transmission electron microscopy. Electron microscopy and analysis 1991, pp. 523–526. Bristol: IOP Publishing.
Krivanek, O. L. & Swann, P. R. (1981). An advanced electron energy loss spectrometer. Quantitative microanalysis with high spatial resolution, pp. 136–140. London: The Metals Society.
Kröger, E. Z. (1970). Transition radiation, Čerenkov radiation and energy losses of relativistic charged particles traversing thin foils at oblique incidence. Z. Phys. 235, 403–421.
Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.
Kuyatt, C. E. & Simpson, J. A. (1967). Electron monochromator design. Rev. Sci. Instrum. 38, 103–111.
Landau, L. & Lifchitz, E. (1966). Mécanique quantique. Théorie non relativiste, pp. 632–690. Moscow: Editions Mir.
Larsen, P. K. & Dobson, P. J. (1988). Editors. Reflection high energy electron diffraction and reflection electron imaging of surfaces. NATO ASI series. New York/London: Plenum Press.
Leapman, R. D., Grunes, L. A. & Fejes, P. L. (1982). Study of the L23 edges in the 3d transition metals and their oxides by electron energy loss spectroscopy with comparisons to theory. Phys. Rev. B, 26, 614–635.
Leapman, R. D., Rez, P. & Mayers, D. F. (1980). K, L and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions. J. Chem. Phys. 72, 1232–1243.
Leapman, R. D. & Swyt, C. R. (1988). Separation of overlapping core edges in EELS spectra by multiple least-squares fitting. Ultramicroscopy, 26, 393–404.
Lehmpfuhl, G. (1974). Dynamical interaction of electron waves in a perfect single crystal. Z. Naturforsch. Teil A, 27, 424–433.
Lichte, H. (1991). Electron image plane off-axis holography of atomic structures. Adv. Opt. Electron Microsc. 12, 25–91.
Lindhard, J. (1954). On the properties of a gas of charged particles. Dan. Vidensk. Selsk. Mater. Fys. Medd. 28, 1–57.
Lindner, T., Sauer, H., Engel, W. & Kambe, K. (1986). Near-edge structure in electron energy loss spectra of MgO. Phys. Rev. B, 33, 22–24.
Liu, J. W. & Smith, V. H. (1977). A critical study of high energy electron scattering from H2. Chem. Phys. Lett. 45, 59–63.
Livingood, J. J. (1969). The optics of dipole magnets. New York: Academic Press.
Lovey, F. C., Coene, W., Van Dyck, D., Van Tendeloo, G., Van Landuyt, J. & Amelinckx, S. (1984). HREM imaging conditions for stacking sequences in 18R martensite of Cu–Al alloys. Ultramicroscopy, 15, 345–356.
Lynch, D. F., Moodie, A. F. & O'Keefe, M. A. (1975). n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Cryst. A31, 300–307.
Lytle, F. W., Greegor, R. B. & Panson, A. Y. (1988). Discussion of X-ray absorption near edge structure: application to Cu in the high Tc superconductors La1.8Sr0.2Cu4 and YBa2Cu3O7. Phys. Rev. B, 37, 1550–1562.
Ma, Y., Rømming, C., Lebech, B. & Gjønnes, J. (1992). Structure refinement of Al3Zr using single-crystal X-ray diffraction, powder neutron diffraction and CBED. Acta Cryst. B48, 11–16.
McClelland, J. J. & Fink, M. (1985). Electron correlation and binding effects in measured electron-scattering cross sections of CO2. Phys. Rev. Lett. 54, 2218–2221.
MacGillavry, C. H. (1940). Zur Prufung der Dynamischen Theorie der Elektronenbeugung an Kristallgitter. Physica (Utrecht), 7, 329–343.
McLean, A. D. & McLean, R. S. (1981). Roothaan–Hartree–Fock atomic wave-functions: Slater basis-set expansions for Z = 55–92. At. Data Nucl. Data Tables, 26, 197–381.
Maher, D. M. (1979). Elemental analysis using inner-shell excitations: a microanalytical technique for materials characterization. Introduction to analytical electron microscopy, edited by J. J. Hren, J. I. Goldstein & D. C. Joy, pp. 259–294. New York: Plenum.
Mamy, J. & Gaultier, J.-P. (1976). Evolution structurale de la montmorillonite associée au phénomène de fixation irréversible du potassium. An. Agron. 27(1), 1–16.
Mann, J. B. (1968). Los Alamos Scientific Laboratory Report LA3691, p. 168.
Manoubi, T., Rez, P. & Colliex, C. (1989). Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides. J. Electron Spectrosc. Relat. Phenom. 50, 1–18.
Manoubi, T., Tence, M., Walls, M. G. & Colliex, C. (1990). Curve fitting methods for quantitative analysis in EELS. Microsc. Microanal. Microstruct. 1, 23–39.
Manzke, R. (1980). Wavevector dependence of the volume plasmon of GaAs and InSb. J. Phys. C, 13, 911–917.
Marks, L. (1986). High resolution electron microscopy of surfaces. In Topics in current physics, Vol. 41. Structure and dynamics of surfaces. I, edited by W. Schommers and P. Von Blackenhagen. Berlin/Heidelberg: Springer Verlag.
Marthinsen, K., Holmestad, R. & Høier, R. (1994). Analytical filtering of low-angle inelastic scattering contributions to CBED contrast. Ultramicroscopy, 55, 268–275.
Maslen, V. M. & Rossouw, C. J. (1983). The inelastic scattering matrix element and its application to electron energy loss spectroscopy. Philos. Mag. A47, 119–130.
Matsuhata, H. & Gjønnes, J. (1994). Bloch-wave degeneracies and non-systematic critical voltage: a method for structure-factor determination. Acta Cryst. A50, 107–115.
Matsuhata, H. & Steeds, J. W. (1987). Observation of accidental Bloch-wave degeneracies of zone-axis critical voltage. Philos. Mag. B55, 39–54.
Matsuhata, H., Tomokiyo, Y., Watanabe, H. & Eguchi, T. (1984). Determination of the structure factors of Cu and Cu3Au by the intersecting Kikuchi-line method. Acta Cryst. B40, 544–549.
Mawhorter, R. J. & Fink, M. (1983). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. II. SO2. J. Chem. Phys. 79, 3292–3296.
Mawhorter, R. J., Fink, M. & Archer, B. T. (1983). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. I. CO2. J. Chem. Phys. 79, 170–174.
Melkanov, M. A., Sawada, T. & Raynal, J. (1966). Nuclear optical model calculations. Methods Comput. Phys. 6, 1–80.
Menter, J. W. (1956). The resolution of crystal lattices. Proc. R. Soc. London Ser. A, 236, 119.
Méring, J. (1949). L'interférence des rayons X dans les systèmes à stratification désordonnée. Acta Cryst. 2, 371–377.
Metherell, A. J. F. (1971). Energy analysing and energy selecting electron microscopes. Adv. Opt. Electron Microsc. 4, 263–361.
Miller, B. R. & Fink, M. (1981). Mean amplitudes of vibration of SF6 and intramolecular multiple scattering. J. Chem. Phys. 75, 5326–5328.
Miller, B. R. & Fink, M. (1985). The vibrationally averaged, temperature-dependent structure of polyatomic molecules. III. NO2. J. Chem. Phys. 83, 939–944.
Möllenstedt, G. & Düker, H. (1956). Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z. Phys. 145, 377–397.
Moodie, A. F. & Warble, C. E. (1967). The observation of primary step growth in magnesium oxide by direct transmission electron microscopy. Philos. Mag. 16, 891–904.
Mori, N., Oikawa, T & Harada, Y. (1990). Development of the imaging plate for the transmission electron microscope and its characteristics. J. Electron Microsc. (Japan), 39, 433–436.
Morse, P. M. (1932). Unelastische Streuung von Kathodenstrahlen. Phys. Z. 33, 443–445.
Mory, C. & Colliex, C. (1989). Elemental analysis near the single-atom detection level by processing sequences of energy-filtered images. Ultramicroscopy, 28, 339–346.
Mott, N. F. & Massey, H. S. W. (1952). The theory of atomic collisions, pp. 224–248. Oxford: Clarendon Press.
Mott, N. F. & Massey, H. S. W. (1965). The theory of atomic collisions, 3rd ed., Chap. IX, Section 4, equations (22) and (23). Oxford University Press.
Müller, J. E., Jepsen, O. & Wilkins, J. W. (1982). X-ray absorption spectra: K edges of 3d transition metals, L edges of 3d and 4d metals and M edges of palladium. Solid State Commun. 42, 365–368.
Nagakura, S., Nakamura, Y. & Suzuki, T. (1982). Forbidden reflection intensity in electron diffraction and its influence on the crystal structure image. Jpn. J. Appl. Phys. 21, L449–L451.
Nellist, P., McCallum, B. & Rodenburg, J. (1995). Resolution beyond the information limit in STEM. Nature (London), 374, 630–632.
Numerov, B. V. (1924). A method of extrapolation of perturbations. Mon. Not. R. Astron. Soc. 84, 592–601.
O'Keefe, M. A., Spence, J. C. H., Hutchinson, J. L. & Waddington, W. G. (1985). Proc. 43rd EMSA Meeting, p. 64. San Francisco: San Francisco Press. [See also H. Hashimoto in Ultramicroscopy (1985), 18, 19–32.]
Olsen, A., Goodman, P. & Whitfield, H. (1985). Tl3SbS3, Tl3SbSe3, Tl3Sb3−xSex and Tl3SbyAs1−ySe3. J. Solid State Chem. 60, 305–315.
Olsen, A. & Spence, J. C. H. (1981). Distinguishing dissociated glide and shuffle set dislocations by high resolution electron microscopy. Philos. Mag. A43, 945–965.
Orchowski, A., Rau, W. D. & Lichte, H. (1995). Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399.
Parker, N. W., Utlaut, M. & Isaacson, M. S. (1978). Design of magnetic spectrometers with second order aberrations corrected. Optik (Stuttgart), 51, 333–351.
Pearce-Percy. H. T. (1978). The design of spectrometers for energy loss spectroscopy. Scaning Electron Microsc. 1, 41–51.
Peixoto, E. M. A., Bunge, C. F. & Bonham, R. A. (1969). Elastic and inelastic electron scattering by He and Ne atoms in their ground states. Phys. Rev. 181, 322–328.
Pendry, J. B. (1974). Low energy electron diffraction. New York: Academic Press.
Peng, L.-M. (1998). Electron scattering factors of ions and their parameterization. Acta Cryst. A54, 481–485.
Peng, L. M. & Cowley, J. M. (1988). Errors arising from numerical use of the Mott formula in electron image simulation. Acta Cryst. A44, 1–5.
Peng, L.-M., Ren, G., Dudarev, S. L. & Whelan, M. J. (1996). Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Cryst. A52, 257–276.
Pennycook, S. J. & Jesson, D. E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy, 37, 14–38.
Pinsker, Z. G. (1953). Electron diffraction. London: Butterworth.
Pirouz, P. (1974). Effects of absorption on lattice images. Optik (Stuttgart), 54, 69–74.
Plançon, A., Rousseaux, F., Tchoubar, D., Tchoubar, C., Krinari, G. & Drits, V. A. (1982). Recording and calculation of hk rod intensities in case of diffraction by highly oriented powders of lamellar samples. J. Appl. Cryst. 15, 509–512.
Powell, C. J. (1976). Cross sections for ionization of inner-shell electrons by electrons. Rev. Mod. Phys. 48, 33–47.
Powell, C. J. (1984). Inelastic scattering of electrons in solids. Electron beam interactions with solids for microscopy, microanalysis and micro-lithography, edited by D. F. Kyser, H. Niedrig, D. E. Newbury & R. Shimizu, pp. 19–31. Chicago: SEM, Inc.
Powell, C. J. (1989). Cross sections for inelastic electron scattering in solids. Ultramicroscopy, 28, 24–31.
Pulay, P., Mawhorter, R. J., Kohl, D. A. & Fink, M. (1983). Ab initio Hartree–Fock calculation of the elastic electron scattering cross section of sulphur hexafluoride. J. Chem. Phys. 79, 185–191.
Raether, H. (1965). Electron energy loss spectroscopy. Springer Tracts Mod. Phys. Vol. 38, pp. 85–170. Berlin: Springer.
Raether, H. (1980). Excitation of plasmons and interband transitions by electrons. Spring Tracts Mod. Phys. Vol. 88. Berlin: Springer.
Rao, C. N., Thomas, J. M., Williams, B. G. & Sparrow, T. G. (1984). Determination of the number of d-electron states in transition metal compounds. J. Phys. Chem. 88, 5769–5770.
Rask, J. H., Miner, B. A. & Buseck, P. (1987). Determination of manganese oxidation states in solids by EELS. Ultramicroscopy, 21, 321–326.
Reimer, L. & Rennekamp, R. (1989). Imaging and recording of multiple scattering effects by angular resolved electron energy loss spectroscopy. Ultramicroscopy, 28, 258–265.
Rez, D., Rez, P. & Grant, I. (1994). Dirac–Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Cryst. A50, 481–497.
Rez, P. (1989). Inner shell spectroscopy: an atomic view. Ultramicroscopy, 28, 16–23.
Ritchie, R. H. (1957). Plasmon losses by fast electrons in thin films. Phys. Rev. 106, 874–881.
Rose, H. & Plies, E. (1974). Entwurf eines fehlerarmen magnetischen Energie Analysators. Optik (Stuttgart), 40, 336–341.
Rose, H. & Spehr, R. (1980). On the theory of the Boersch effect. Optik (Stuttgart), 57, 339–364.
Ross, A. W. & Fink, M. (1986). Atomic scattering factor and spin polarization calculations. Phys. Rev. 85, 6810–6811.
Sasaki, H., Konaka, S., Iijima, T. & Kimura, M. (1982). Small-angle electron scattering and electron density in carbon dioxide. Int. J. Quantum Chem. 21, 475–485.
Saunders, M., Bird, D. M., Midgley, P. A. & Vincent, R. (1994). Structure factor refinement by zone-axis CBED pattern matching. Proceedings of 13th International Congress on Electron Microscopy, Paris, France, 17–22 July 1994, Vol. 1, pp. 847–848.
Saxton, W. O. (1978). Computer techniques for image processing in electron microscopy, pp. 9–19. New York: Academic Press.
Saxton, W. O. (1980a). Recovery of specimen information for strongly scattering objects. In Computer processing of electron microscopy images. Topics in current physics, Vol. 13, edited by P. W. Hawkes, p. 35. Berlin/Heidelberg/New York: Springer Verlag.
Saxton, W. O. (1980b). Correction of artifacts in linear and nonlinear high resolution electron micrographs. J. Microsc. Spectrosc. Electron, 5, 665–674.
Sayers, D. E., Stern, E. A. & Lytle, F. M. (1971). New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Phys. Rev. Lett. 27, 1204–1207.
Schäfer, L. & Seip, H. M. (1967). Studies on the failure of the first Born approximation in electron diffraction. VI. Ruthenium tetraoxide. Acta Chem. Scand. 21, 737–744.
Schattschneider, P. (1983). A performance test of the recovery of single energy loss profiles via matrix analysis. Ultramicroscopy, 11, 321–322.
Schattschneider, P. (1989). The dielectric description of inelastic electron scattering. Ultramicroscopy, 28, 1–15.
Scheinfein, M. & Isaacson, M. S. (1984). Design and performance of second order aberration corrected spectrometers for use with the scanning transmission electron microscope. Scanning Electron Microsc. 4, 1681–1696.
Scheinfein, M. & Isaacson, M. S. (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B4, 326–332.
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29.
Schiske, P. (1975). Phase determination from a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D, 8, 1372–1386.
Schnatterly, S. E. (1979). Inelastic electron scattering spectroscopy. Solid State Phys. 14, 275–358.
Schomaker, V. & Glauber, R. (1952). The Born approximation in electron diffraction. Nature (London), 170, 290–291.
Schröder, B. & Geiger, J. (1972). Electron spectrometric study of amorphous germanium and silicon in the two phonon region. Phys. Rev. Lett. 28, 301–303.
Seip, H. M. (1965). Studies on the failure of the first Born approximation in electron diffraction. I. Uranium hexafluoride. Acta Chem. Scand. 19, 1955–1968.
Seip, H. M. & Seip, R. (1966). Studies on the failure of the first Born approximation in electron diffraction. IV. Molybdenum- and tungsten hexafluoride. Acta Chem. Scand. 20, 2698–2711.
Seip, H. M. & Stølevik, V. (1966a). Studies on the failure of the first Born approximation in electron diffraction. II. Osmium tetraoxide. Acta Chem. Scand. 20, 385–394.
Seip, H. M. & Stølevik, V. (1966b). Studies on the failure of the first Born approximation in electron diffraction. III. Tellurium hexafluoride. Acta Chem. Scand. 20, 1535–1545.
Self, P. G., O'Keefe, M. A., Buseck, P. R. & Spargo, A. E. C. (1983). Practical computation of amplitudes and phases in electron diffraction. Ultramicroscopy, 11, 35–52.
Sevely, J. (1985). Voltage dependence in electron energy loss spectroscopy. Inst. Phys. Conf. Ser. 78, 155–160.
Shibata, S., Hirota, F., Kakuta, N. & Muramatsu, T. (1980). Electron distribution in water by high-energy electron scattering. Int. J. Quantum Chem. 18, 281–285.
Shiles, E., Sazaki, T., Inokuti, M. & Smith, D. Y. (1980). Self consistency and sum-rule tests in the Kramers Kronig analysis of optical data: applications to aluminium. Phys. Rev. B, 22, 1612–1628.
Shindo, D., Hiraga, K., Oikawa, T. & Mori, N. (1990). Quantification of electron diffraction with imaging plate. J. Electron Microsc. 39, 449–453.
Shuman, H. (1980). Correction of the second order aberrations of uniform field magnetic sections. Ultramicroscopy, 5, 45–53.
Shuman, H. & Kruit, P. (1985). Quantitative data processing of parallel recorded electron energy-loss spectra with low signal to background. Rev. Sci. Instrum. 56, 231–239.
Shuman, H. & Somlyo, A. P. (1987). Electron energy loss analysis of near-trace-element concentrations of calcium. Ultramicroscopy, 21, 23–32.
Smith, D. J., Bursill, L. A. & Wood, G. J. (1985). Non-anomalous high-resolution imaging of crystalline materials. Ultramicroscopy, 16, 19–32.
Smith, D. J., Saxton, W. O., O'Keefe, M. A., Wood, G. J. & Stobbs, W. M. (1983). The importance of beam alignment and crystal tilt in high resolution electron microscopy. Ultramicroscopy, 11, 263–282.
Spargo, A. E. C. (1994). Electron crystallography and crystal structure. Proceedings of 13th International Congress on Electron Microscopy, Paris, France 17–22 July 1994, Vol. 1, pp. 959–960.
Spence, J. C. H. (1979). Uniqueness and the inversion problem of incoherent multiple scattering. Ultramicroscopy, 4, 9–12.
Spence, J. C. H. (1981). The crystallographic information in localized characteristic-loss electron images and diffraction patterns. Ultramicroscopy, 7, 59–64.
Spence, J. C. H. (1988a). Inelastic electron scattering: Parts I and II. High resolution transmission electron microscopy and associated techniques, edited by P. R. Buseck, J. M. Cowley & L. Eyring, pp. 129–189. Oxford University Press.
Spence, J. C. H. (1988b). High resolution electron microscopy, 2nd ed. New York: Oxford University Press.
Spence, J. C. H. (1998). Direct inversion of dynamical electron diffraction patterns to structure factors. Acta Cryst. A54, 7–18.
Spence, J. C. H. & Lynch, J. (1982). STEM microanalysis and inelastic imaging in crystals. Ultramicroscopy, 9, 267–278.
Spence, J. C. H., O'Keefe, M. A. & Iijima, S. (1978). On the thickness periodicity of atomic-resolution images of dislocation cores. Philos. Mag. A38, 463–482.
Spence, J. C. H. & Tafto, J. (1983). ALCHEMI: a new technique for locating atoms in small crystals. J. Microsc. 130, 147–154.
Spence, J. C. H. & Zuo, J. M. (1992). Electron microdiffraction. New York: Plenum.
Steeds, J. W. (1984). Further development in the analysis of convergent beam electron diffraction (CBED) data. EMAG 1983. Inst. Phys. Conf. Ser. No. 69, pp. 31–36.
Stohr, J., Sette, F. & Johnson, A. L. (1984). Near edge X-ray absorption fine structure studies of chemisorbed hydrocarbons: bond lengths with a ruler. Phys. Rev. Lett. 53, 1684–1687.
Strauss, M. G., Naday, Y., Sherman, I. S. & Zaluzec, N. J. (1987). CCD base parallel detection system for EELS spectroscopy and imaging. Ultramicroscopy, 22, 117–124.
Sturm, K. (1982). Electron energy loss in simple metals and semiconductors. Adv. Phys. 31, 1–64.
Swyt, C. R. & Leapman, R. D. (1982). Plural scattering in electron energy loss analysis. Scanning Electron Microsc. 1, 73–82.
Taft, E. A. & Philipp, H. R. (1965). Optical properties of graphite. Phys. Rev. A, 138, 197–202.
Taftø, J. & Gjønnes, J. (1985). The intersecting Kikuchi line technique: critical voltage at any voltage. Ultramicroscopy, 17, 329–334.
Tafto, J. & Krivanek, O. L. (1982). Site specific valence determination by EELS. Phys. Rev. Lett. 48, 560–563.
Taftø, J. & Metzger, T. H. (1985). Large-angle convergent-beam electron diffraction; a simple technique for the study of modulated structures with application to V2D. J. Appl. Cryst. 18, 110–113.
Tafto, J. & Zhu, J. (1982). Electron energy-loss near edge structure (ELNES), a potential technique in the studies of local atomic arrangements. Ultramicroscopy, 9, 349–354.
Takayanagi, K. (1984). Surface structure imaging by electron microscopy. J. Microsc. 136, 287–298.
Tanaka, M. & Tsuda, K. (1990). Determination of positional parameters by convergent-beam electron diffraction. Proceedings of 12th International Congress on Electron Microscopy 1990, Vol. 2, pp. 518–519.
Tavard, C. & Bonham, R. A. (1969). Quantum-mechanical formulas for the inelastic scattering of fast electrons and their Compton line shape. Nonrelativistic approximation. J. Chem. Phys. 50, 1736–1747.
Tavard, C., Rouault, M. & Roux, M. (1965). Diffraction des rayons X et des électrons par les molécules. III. Une méthode de detémination des densités électroniques moléculaires. J. Chim. Phys. 62, 1410–1417.
Tavard, C. & Roux, M. (1965). Calcul des intensités de diffraction de rayons X et de électrons par les molécules. C. R. Acad. Sci. 260, 4933–4936.
Teo, B. K. & Joy, D. C. (1981). EXAFS spectroscopy techniques and applications. New York: Plenum.
Terasaki, O., Watanabe, D. & Gjønnes, J. (1979). Determination of crystal structure factor of Si by the intersecting-Kikuchi-line method. Acta Cryst. A35, 895–900.
Thakkar, A. J. & Smith, V. H. Jr (1978). Form factors and total scattering intensities for the helium-like ions from explicitly correlated wavefunctions. J. Phys. B, 11, 3803–3820.
Thole, B. T., van der Laan, G., Fuggle, J. C., Sawatzky, G. A., Karnatak, R. C. & Esteva, J.-M. (1985). 3d X-ray absorption lines and the [3d^94f^{n+1}] multiplets of the lanthanides. Phys. Rev. B, 32, 5107–5118.
Tonomura, A. (1992). Electron-holographic interference microscopy. Adv. Phys. 41, 59–103.
Tossell, J. A., Vaughan, D. J. & Johnson, K. H. (1974). The electronic structure of rutile, wustite and hematite from molecular orbital calculations. Am. Mineral. 59, 319–334.
Treacy, M. M. J. & Rice, S. B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J. Microsc. 156, 211–234.
Trebbia, P. (1988). Unbiased method for signal estimation in EELS. Concentration measurements and detection limits in quantitative analysis: methods and programs. Ultramicroscopy, 24, 399–408.
Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–432.
Vainshtein, B. K. (1964). Structure analysis by electron diffraction. Oxford: Pergamon Press.
Van Dyck, D. (1980). Fast computational procedures for the simulation of structure images in complex or disordered crystals. J. Microsc. 119, 141.
Van Dyck, D., Op de Beeck, M. & Coene, W. M. J. (1994). Information in electron microscopy. Microsc. Soc. Am. Bull. 24, 427–437.
Venghaus, H. (1975). Redetermination of the dielectric function of graphite. Phys. Status Solidi B, 71, 609–614.
Vincent, R., Bird, D. M. & Steeds, J. W. (1984). Structure of AuGeAs determined by convergent beam electron diffraction. II. Refinement of structural parameters. Philos. Mag. A50, 765–786.
Vincent, R. & Midgley, P. A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–284.
Voigt-Martin, I. G., Yan, D. H., Gilmore, C. J., Shankland, K. & Bricogne, G. (1994). The use of maximum entropy and likelihood ranking to determine the crystal structure of 4-[4′-(N-dimethylamino)benzylidene]pyrazolidine-3,5-dione at 1.4 Å resolution from electron diffraction and high-resolution electron microscopy image data. Ultramicroscopy, 56, 271–288.
Von Festenberg, C. (1968). Retardierungseffekte im Energieverlustspektrum von GaP. Z. Phys. 214, 464.
Voss, R., Lehmpfuhl, G. & Smith, D. J. (1980). Influence of doping on the crystal potential of silicon investigated by the convergent beam electron diffraction technique. Z. Naturforsch. Teil A, 35, 973–984.
Vvedensky, D. D., Saldin, D. K. & Pendry, J. B. (1985). Azimuthal and polar angle dependence in XANES of low symmetry adsorption sites. Surf. Sci. 162, 909–912.
Wade, R. H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination. Optik (Stuttgart), 49, 81–92.
Wang, J., Esquivel, R. O., Smith, V. H. Jr & Bunge, C. (1995). Accurate elastic and inelastic scattering factors from He to Ne using correlated wavefunctions. Phys. Rev. A, 51, 3812–3818.
Wang, J., Sagar, R. P., Schmider, H. & Smith, V. H. Jr (1993). X-ray elastic and inelastic scattering factors for neutral atoms Z = 2–92. At. Data Nucl. Data Tables, 53, 233–269.
Wang, J., Tripathi, A. N. & Smith, V. H. Jr (1994). Chemical binding and electron correlation effects in X-ray and high energy electron scattering. J. Chem. Phys. 101, 4842–4854.
Warren, B. E. (1941). X-ray diffraction in random layer lattices. Phys. Rev. 59, 693–698.
Watanabe, D., Uyeda, R. & Fukuhara, A. (1969). Determination of the atomic form factor by high-voltage electron diffraction. Acta Cryst. A25, 138–140.
Wehenkel, C. (1975). Mise au point d'une nouvelle méthode d'analyse quantitative des spectres de pertes d'énergie d'électrons rapides diffusés dans la direction du faisceau incident: application à l'étude des métaux nobles. J. Phys. (Paris), 36, 199–207.
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst. A47, 590–597.
Weng, X. D. & Rez, P. (1989). Multiple scattering approach to oxygen K near edge structures in EELS spectroscopy of alkaline earths. Phys. Rev. B, 39, 7405–7412.
Weng, X. D., Rez, P. & Ma, H. (1989). Carbon K-shell near-edge structure: multiple scattering and band theory calculations. Phys. Rev. B. 40, 4175–4178.
Weng, X. D., Rez, P. & Sankey, O. F. (1989). Pseudo-atomic orbital band theory applied to EELS near edge structures. Phys. Rev. B, 40, 5694–5704.
Wien, W. (1897). Vert. Deutschen Phys. Res. 16, 165.
Williams, B. G. & Bourdillon, A. J. (1982). Localised Compton scattering using EELS. J. Phys. C, 15, 6881–6890.
Williams, B. G., Sparrow, T. G. & Egerton, R. F. (1984). Electron Compton scattering from solids. Proc. R. Soc. London Ser. A, 393, 409–422.
Williams, D. B. & Carter, C. B. (1996). Transmission electron microscopy. New York: Plenum Press.
Wilson, A. J. C. (1949). Diffraction by random layers: ideal line profiles and determination of structure amplitudes from observed line profiles. Acta Cryst. 2, 245–251.
Wilson, A. J. C. (1962). X-ray optics, 2nd ed. London: Methuen.
Wilson, A. R., Spargo, A. E. C. & Smith, D. J. (1982). The characterisation of instrumental parameters in the high resolution electron microscope. Optik (Stuttgart), 61, 63–78.
Wong, T. C. & Bartell, L. S. (1973). Three atom scattering in gas-phase electron diffraction. II. A general treatment. J. Chem. Phys. 58, 5654–5660.
Xie, S.-D., Fink, M. & Kohl, D. A. (1984). Basis set dependence of ab initio SCF elastic, Born, electron scattering cross sections for C2H4. J. Chem. Phys. 81, 1940–1942.
Yagi, K. (1993). RHEED and REM. In Electron diffraction techniques, Vol. 2, edited by J. M. Cowley. IUCr/Oxford University Press.
Yagi, K. & Cowley, J. M. (1978). Electron microscopy study of ordering of potassium ions in cubic KSbO3. Acta Cryst. A34, 625–634.
Yates, A. C. (1970). Relativistic effects in high-energy inelastic electron–atom collisions. Chem. Phys. Lett. 6, 49–53.
Yates, A. C. (1971). A program for calculating relativistic elastic electron–atom collision data. Comput. Phys. Commun. 2, 175–179.
Yates, A. C. & Bonham, R. A. (1969). Use of relativistic electron scattering factors in electron diffraction analysis. J. Chem. Phys. 50, 1056–1058.
Zaanen, J., Sawatzky, G. A., Fink, J., Speier, W. & Fuggle, J. C. (1985). L23 absorption spectra of the lighter 3d transition metals. Phys. Rev. B, 32, 4905–4913.
Zakharov, N. D., Pasemann, M. & Rozhanski, V. N. (1982). Observations of point defects in silicon by means of dark-field lattice plane imaging. Phys. Status Solidi A, 71, 275–281.
Zanchi, G., Perez, J. P. & Sevely, J. (1975). Adaptation of magnetic filtering device on a one megavolt electron microscope. Optik (Stuttgart), 43, 495–501.
Zanchi, G., Sevely, J. & Jouffrey, B. (1977). Second order image aberration of a one megavolt magnetic filter. Optik (Stuttgart), 48, 173–192.
Zhukhlistov, A. P., Avilov, A. S., Ferraris, G., Zvyagin, B. B. & Plotnikov, V. P. (1997). Statistical distribution of hydrogen over three positions in brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr. Rep. 42, 774–777.
Zimmermann, S. (1976). The dielectric function of InSb determined by electron energy losses. J. Phys. C, 9, 2643–2649.
Zou, X. D., Sukharev, Y. & Hovmöller, S. (1993). ELD – a computer program for extracting intensities from electron diffraction patterns. Ultramicroscopy, 49, 147–158.
Zuo, J. M., Høier, R. & Spence, J. C. H. (1989). Three-beam and many-beam theory in electron diffraction and its use for structure-factor phase determination in non-centrosymmetrical crystal structures. Acta Cryst. A45, 839–851.
Zuo, J. M., Spence, J. C. H., Downs, J. & Mayer, J. (1993). Measurement of individual structure-factor phases with tenth-degree accuracy: the 00.2 reflection in BeO studied with electron and X-ray diffraction. Acta Cryst. A49, 422–429.
Zuo, J. M., Spence, J. C. H. & O'Keefe, M. (1988). Bonding in GaAs. Phys. Rev. Lett. 61, 353–356.
Zvyagin, B. B. (1967). Electron diffraction analysis of clay mineral structures. New York: Plenum.
Zvyagin, B. B., Vrublevskaya, Z. V., Zhukhlistov, A. P., Sidorenko, O. V., Soboleva, S. V. & Fedotov, A. F. (1979). High-voltage electron diffraction in the study of layered minerals. Moscow: Nauka.
Zvyagin, B. B., Zhukhlistov, A. P. & Plotnikov, V. P. (1996). The development of electron diffractometry of minerals. Structural studies of crystals (For the 75th birthday of B. K. Vainshtein), pp. 225–234. Moscow: Nauka Physmathgis.