International Tables for Crystallography (2006). Vol. C, ch. 4.3, pp. 259-429
https://doi.org/10.1107/97809553602060000593

Chapter 4.3. Electron diffraction

Chapter index

Abbe theory 4.3.8.1
Aberrations
coefficients 4.3.8.5
Absorption
anomalous 4.3.6.2, 4.3.6.2
effects 4.3.1.5
function 4.3.1.5
Accelerating voltage
fluctuations 4.3.8.3, 4.3.8.4
ALCHEMI (atom location by channelling enhanced microanalysis) 4.3.4.4.4
Aluminium
dielectric coefficients 4.3.4.18
effective number density 4.3.4.5, 4.3.4.32
Anatase, high-energy resolution spectra 4.3.4.27
Approximations
Glauber 4.3.3.3
kinematical 4.3.1.3
Moliere high-energy 4.3.1.3
no upper-layer-line 4.3.6.1
phase-grating 4.3.1.3
projected charge-density 4.3.8.3, 4.3.8.3
two-beam 4.3.1.3
weak-phase-object 4.3.8.3, 4.3.8.3, 4.3.8.3, 4.3.8.3
Astigmatism 4.3.8.1, 4.3.8.2, 4.3.8.4
Atomic scattering amplitudes 4.3.1.6
Atomic scattering factors 4.3.1.2
for electrons (tables) 4.3.1.1, 4.3.1.2, 4.3.2.2, 4.3.2.3
Atom location by channelling enhanced microanalysis (ALCHEMI) 4.3.4.4.4
Axial holography 4.3.8.6
Beam divergence 4.3.8.4, 4.3.8.4
Bethe ridge 4.3.4.4.4
Bethe theory for inelastic scattering 4.3.4.4.2
Binding effects 4.3.3.3, 4.3.3.3, 4.3.3.3, 4.3.3.3
Bloch standing waves 4.3.4.4.4
Bloch-wave method 4.3.1.1, 4.3.6.2, 4.3.6.2, 4.3.6.2, 4.3.8.5
Bonding electrons, distribution of 4.3.8.4
Born approximation
Born series 4.3.1.1
Castaing–Henry filter 4.3.4.11
CBED (convergent-beam electron diffraction) 4.3.7, 4.3.7, 4.3.7
CBED disc 4.3.7
Čerenkov radiation 4.3.4.3.3
Chromatic aberration constant 4.3.8.3, 4.3.8.4
Column approximation 4.3.6.1
Compton wavelength 4.3.1.3
Computing methods for electron diffraction 4.3.8.5
Convergent-beam electron diffraction (CBED) 4.3.7, 4.3.7, 4.3.7, 4.3.7, 4.3.7, 4.3.7
Core-electron spectroscopy 4.3.4.4, 4.3.4.21
Core-loss spectroscopy 4.3.4.4, 4.3.4.21
Correlation energy 4.3.3.3
Critical-voltage effect 4.3.6.2
Cross sections
differential scattering 4.3.1.3
elastic differential scattering 4.3.3.2.1
ionization 4.3.4.4.2
Crystal(s)
misalignment (tilt) 4.3.8.4
Crystalline solids 4.3.1
Crystal structure
determination by HREM 4.3.8
Crystal thickness
determination by electron diffraction 4.3.7, 4.3.7
Debye–Waller factor 4.3.6.2
Deconvolution
techniques 4.3.4.1.3
Defects 4.3.8.1, 4.3.8.1
Defect types, electron diffraction 4.3.8.3
Detection
limits 4.3.4.4.4
systems 4.3.4.2.3
Dielectric coefficients 4.3.4.3.2, 4.3.4.18
Dielectric description 4.3.4.3.2
Differential scattering cross section 4.3.1.3
Diffuse scattering 4.3.1.5
Direct lattice 4.3.5.2, 4.3.5.2
Drude model 4.3.4.3.2
Dynamical diffraction
calculations 4.3.1.7
multislice method 4.3.6.1
Dynamical wave amplitudes 4.3.6
Dynamic R factor 4.3.8.6
Elastic differential scattering cross section 4.3.3.2.1
Elastic scattering 4.3.6.2
factors 4.3.3.2.1
Electron beam, misalignment 4.3.8.4
Electron diffraction 4.3.1
absorption effects 4.3.1.5
boundary conditions 4.3.1.1
computing methods 4.3.8.5
crystal thickness 4.3.7, 4.3.7
determination of crystal thickness 4.3.7
intensities 4.3.7
measurement of structure factors 4.3.7
patterns 4.3.3.3
scattering factors 4.3.1
structure factors 4.3.7
transmission function 4.3.1.1
useful parameters as a function of accelerating voltage 4.3.2.1
Electron diffractometry 4.3.5.2
Electron energy-loss near-edge structure (ELNES) 4.3.4.4.3, 4.3.4.29
Electron energy-loss spectrometry
Castaing–Henry filter 4.3.4.11
crystallographic information from 4.3.4.2.3
parallel detection 4.3.4.2.3, 4.3.4.12
Wien filter 4.3.4.2.2, 4.3.4.10
aberrations in 4.3.4.2.2
analysers for 4.3.4.2.1
detection systems 4.3.4.2.3
monochromators for 4.3.4.2.1
non-characteristic background 4.3.4.1.4
spectrometers for 4.3.4.1, 4.3.4.2.1, 4.3.4.10
types of excitation in 4.3.4.5
Electron holography 4.3.8.5, 4.3.8.5, 4.3.8.6
Electronic instability 4.3.8.3, 4.3.8.4
Electron inelastic scattering 4.3.3.2
Electron microscopy 4.3.8
Electron scattering
amplitudes 4.3.1.1
Electrons
scattering factors 4.3.2
wavelength 4.3.8.4
Electron transitions 4.3.1.5
ELNES (electron energy-loss near-edge structure) 4.3.4.4.3, 4.3.4.29
Energy-dispersive
analysis 4.3.8.7
Energy-loss spectrometer 4.3.4.2.1
EXAFS (extended X-ray absorption fine structure) 4.3.4.29
Excitation errors 4.3.6.1
EXELFS (extended electron fine structure) 4.3.4.29
Extended electron fine structure (EXELFS) 4.3.4.29
Extended X-ray absorption fine structure [(E)XAFS] 4.3.4.29
Fano plots 4.3.4.4.2, 4.3.4.4.2
Fermi level 4.3.4.1.4, 4.3.4.5
germanium 4.3.4.4.1
heavy metals 4.3.4.4.1
sulfur 4.3.4.4.1
transition elements 4.3.4.4.1
Fibre texture 4.3.5.3
Film
aluminium 4.3.4.1.3
germanium 4.3.4.6
Filters
Castaing–Henry 4.3.4.11
Fine-grained substances, oriented texture patterns 4.3.5.2
First-order Laue zone (FOLZ) 4.3.7, 4.3.7
FOLZ (first-order Laue zone) 4.3.7, 4.3.7
Fourier imaging, n-beam 4.3.8.2
Fourier transformation
techniques 4.3.4.1.3
Free-electron gas
Lorentz model 4.3.4.3.2, 4.3.4.17
Fresnel diffraction theory 4.3.1.1
Fringe period 4.3.7
Fringe visibility 4.3.8.2
Gaussian fits to X-ray scattering factors 4.3.1.6
Geometrical analysis of oriented texture patterns 4.3.5.2
Germanium, Fermi level 4.3.4.4.1
Germanium film 4.3.4.6
Gibbs instability 4.3.6.1
Glauber approximation 4.3.3.3
Gold, dielectric coefficients 4.3.4.18
Graphite
dielectric functions 4.3.4.19
Heavy metals, Fermi level 4.3.4.4.1
HEED (high-energy electron diffraction) 4.3.5.2
High-angle annular dark-field (HAADF) images 4.3.8.7
High-energy electron diffraction (HEED) 4.3.5.2
High-order Laue zone (HOLZ) 4.3.7, 4.3.7
High-resolution electron microscopy (HREM) 4.3.1.6, 4.3.8
Holographic reconstructions 4.3.8.6
HOLZ (high-order Laue zone) 4.3.7, 4.3.7
HREM (high-resolution electron microscopy) 4.3.1.6, 4.3.8
Hyper-resolution 4.3.8.6
Image processing 4.3.8.6, 4.3.8.6
Imaging plates 4.3.8.5
Indium antimonide, dielectric coefficients 4.3.4.18
Inelastic crystal excitations 4.3.8.4
Inelastic scattering 4.3.6.2
Bethe theory 4.3.4.4.2
electrons 4.3.4.1.1
neutrons 4.3.4.1.1
Inelastic scattering factors for electrons (Table 4.3.3.2) 4.3.3.2
Information resolution limit 4.3.8.3, 4.3.8.4, 4.3.8.7
Interband transition 4.3.4.3.2
Intramolecular multiple scattering 4.3.3.3
Ionicity, degree of 4.3.8.4
Ionization cross sections 4.3.4.4.2
Kikuchi lines 4.3.7, 4.3.7
Kinematical approximation 4.3.1.3, 4.3.1.7, 4.3.1.7
Lamellar textures 4.3.5.2
Lattice-fringe images 4.3.8.2
Layer lines 4.3.5.3, 4.3.5.3, 4.3.5.3
Layer silicates 4.3.5.4
Lorentzian profiles 4.3.4.3.2
Lorentz model 4.3.4.3.2, 4.3.4.17
Matrix diagonalization 4.3.8.5
Maximum-entropy method 4.3.8.8
Metals
texture studies 4.3.5.4
Microanalysis
quantitative 4.3.4.4.4
Misalignment
of electron beam 4.3.8.4
Misorientation functions 4.3.5.2
Molecular scattering factors 4.3.3.3
Moliere high-energy approximation 4.3.1.3
Monochromators 4.3.4.2.1
Morse approximation 4.3.3.2.2, 4.3.3.2.2
Mott–Bethe formula 4.3.1.6
Multiple scattering
intramolecular 4.3.3.3
Poisson distribution 4.3.4.1.3
problems associated with 4.3.4.1.3
Multislice method 4.3.6.1, 4.3.6.1, 4.3.6.2, 4.3.8.5
n-beam Fourier imaging 4.3.8.2
Near-edge fine structures 4.3.4.4.3, 4.3.4.29
Neutron scattering
inelastic, in spectroscopy of solids 4.3.4.1.1
Numerical approximations to f(s) 4.3.1.6
Objective-lens defocus 4.3.8.2
Oblique-texture electron difraction patterns 4.3.5.2
Optical
diffractograms 4.3.8.6
reflectivity, graphite 4.3.4.19
Oriented texture patterns 4.3.5
oriented texture patterns 4.3.5.2
reciprocal-space representation 4.3.5.2
Parallel detection 4.3.4.2.3, 4.3.4.12
Partial wave phase shifts 4.3.3.2.1
Pauli principle 4.3.4.5
PCD (projected charge-density) approximation 4.3.8.3, 4.3.8.3
Phase analysis, electron diffraction 4.3.5.1
Phase-grating approximation 4.3.1.3
Phonons 4.3.1.5
Photoabsorption measurements 4.3.4.4.2
Phyllosilicates 4.3.5.3
Plasmon(s) 4.3.1.5, 4.3.4.3.4
cross section 4.3.4.3.1, 4.3.4.3.1, 4.3.4.14
energies in metals 4.3.4.3.1, 4.3.4.2
lifetime 4.3.4.3.1
Poisson distribution 4.3.4.1.3
Polymers
texture studies 4.3.5.4
Polytypism
oriented texture patterns 4.3.5.2
Projected charge-density (PCD) approximation 4.3.8.3, 4.3.8.3
Propagation function 4.3.6.1
Quantitative microanalysis 4.3.4.4.4
Radiation damage 4.3.7
Rayleigh criterion 4.3.8.6
Real crystals 4.3.8.1
Real solids 4.3.4.3.3
Reciprocal lattice 4.3.5.2
point 4.3.6.2
Reflection electron microscopy (REM) 4.3.8.7
Reflection high-energy electron diffraction (RHEED) 4.3.8.7
Relativistic corrections 4.3.3.2.2
Relativistic effects 4.3.1.4, 4.3.1.7, 4.3.3.2.1
REM (reflection electron microscopy) 4.3.8.7
R factors
dynamical 4.3.8.6
RHEED (reflection high-energy electron diffraction) 4.3.8.7
Rotation diagrams 4.3.5.3
Sayre's equation 4.3.8.8
Scanning transmission electron microscope (STEM) 4.3.8.7, 4.3.8.7
Scanning tunnelling microscope 4.3.8.7
Scattering amplitudes 4.3.3.2.1
for electrons 4.3.1.2, 4.3.2.2
Scattering cross sections
elastic differential 4.3.3.2.1
Scattering
diffuse 4.3.1.5
elastic 4.3.6.2
electron 4.3.1
inelastic 4.3.6.2
multiple, deconvolution techniques 4.3.4.1.3
multiple, Poisson distribution 4.3.4.1.3
multiple, problems associated with 4.3.4.1.3
thermal diffuse 4.3.6.2
Scattering factors
complex 4.3.3.2
electron 4.3.1
for electrons, molecular 4.3.3.3
for electrons, partial wave (Table 4.3.3.1) 4.3.3.1
for neutral atoms 4.3.1.1, 4.3.2.3
parameterization 4.3.2
X-ray, Gaussian fits 4.3.1.6
X-ray incoherent 4.3.3.2.2
Schrödinger wave equation 4.3.6.2
Selected-area diffraction patterns 4.3.8.8
Semiconductor crystals 4.3.8.7
Solid-state effects 4.3.4.4.3
Solid-state valence-band theory 4.3.6.2
Spectrometers 4.3.4.2.2
Spectroscopy
electron energy-loss 4.3.4.1.1
Spherical aberration 4.3.8.2, 4.3.8.2, 4.3.8.4
Spin
polarization 4.3.3.2.1
Stationary-phase focus 4.3.8.3, 4.3.8.4
STEM (scanning transmission electron microscope) 4.3.8.7, 4.3.8.7
Structure amplitude, complex 4.3.1.5
Structure analysis
electron diffraction 4.3.5.1, 4.3.5.2
Structure factor(s)
measurement by electron diffraction 4.3.7
Structure imaging, electron diffraction 4.3.8.3
Structure refinement 4.3.8.4
Sulfur, Fermi level 4.3.4.4.1
Surface plasmons 4.3.4.3.4
Surface structure 4.3.8.7
Tangent formula 4.3.8.8
TEM (transmission electron microscopy) 4.3.8.7
Texture
axis 4.3.5.2
basis 4.3.5.2
fibre 4.3.5.3
lamellar 4.3.5.2
patterns 4.3.5.1
Thermal diffuse scattering 4.3.6.2
Three-beam fringes 4.3.8.2, 4.3.8.2
Tilt-series reconstruction method 4.3.8.6
Transition elements, Fermi level 4.3.4.4.1
Transmission electron microscopy (TEM) 4.3.8.7
Transmission function 4.3.6.1
Two-beam approximation 4.3.1.3
Volume
plasmons 4.3.4.3.1
Wave amplitudes, dynamical 4.3.6
Weak-phase-object (WPO) approximation 4.3.8.3, 4.3.8.3, 4.3.8.3, 4.3.8.3, 4.3.8.6
Wien filter 4.3.4.2.2
WPO (weak-phase-object) approximation 4.3.8.3, 4.3.8.3, 4.3.8.3, 4.3.8.3, 4.3.8.6
XAFS (extended X-ray absorption fine structure) 4.3.4.29
XANES (X-ray absorption near-edge structure) 4.3.4.29
X-ray diffraction
texture patterns 4.3.5.2
X-ray incoherent scattering factors 4.3.3.2.2
Zero line 4.3.5.3
Zero-order Laue zone (ZOLZ) 4.3.7, 4.3.7
Zero plane 4.3.5.3, 4.3.5.3
ZOLZ (zero-order Laue zone) 4.3.7, 4.3.7