International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 4.4, pp. 430-487
https://doi.org/10.1107/97809553602060000594

Chapter 4.4. Neutron techniques

I. S. Anderson,a P. J. Brown,a J. M. Carpenter,b G. Lander,c R. Pynn,d J. M. Rowe,e O. Schärpf,f V. F. Searsg and B. T. M. Willish

aInstitut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France,bIntense Pulsed Neutron Source, Building 360, Argonne National Laboratory, Argonne, IL 60439, USA,cITU, European Commission, Postfach 2340, D-76125 Karlsruhe, Germany,dLANSCE, MS H805, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA,eNIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA,fPhysik-Department E13, TU München, James-Franck-Strasse 1, D-85748 Garching, Germany,gAtomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada K0J 1J0, and hChemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England

References

Abrahams, K., Steinsvoll, O., Bongaarts, P. J. M. & De Lange, P. W. (1962). Reversal of the spin of polarized thermal neutrons without depolarization. Rev. Sci. Instrum. 33, 524–529.
Agamalyan, M. M., Drabkin, G. M. & Sbitnev, V. I. (1988). Spatial spin resonances of polarized neutrons. A tunable slow neutron filter. Phys. Rep. 168, 265–303.
Alefeld, B. (1972). Neutronen-Rückstreuspektrometer. Kerntechnik, 14, 15–17.
Alefeld, B., Duppich, J., Schärpf, O., Schirmer, A., Springer, T. & Werner, K. (1988). The new neutron guide laboratory at the FRJ-2 reactor in the KFA Jülich and its special beam forming devices. Thin film neutron optical devices: mirrors, supermirrors, multilayer monochromators, polarizers, and beam guides, edited by C. F. Majkrzak, pp. 75–83. SPIE Proc. No. 983. Bellingham, WA: SPIE.
Alvarez, L. W. & Bloch, F. (1940). A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–122.
Anderson, I. S. (1988). Neutron beam focusing using supermirrors. Thin film neutron optical devices: mirrors, supermirrors, multilayer monochromators, polarizers, and beam guides, edited by C. F. Majkrzak, pp. 84–92. SPIE Proc. No. 983. Bellingham, WA: SPIE.
Anderson, I. S. & Høghøj, P. (1996). New developments in Ni/Ti multilayers. ILL 1996 Annual Report, pp. 84–85. Institut Laue–Langevin, Grenoble, France.
Bacon, G. E. (1975). Neutron diffraction, 3rd ed. Oxford: Clarendon Press.
Bacon, G. E. & Lowde, R. D. (1948). Secondary extinction and neutron crystallography. Acta Cryst. 1, 303–314.
Badurek, G. & Rauch, H. (1978). Experimental capability study of non-conventional methods in neutron time-of-flight analysis. Neutron Inelastic Scattering Proceedings, Vol. I, pp. 211–227. Vienna: IAEA.
Bednarski, S., Dobrzynski, L. & Steinsvoll, O. (1980). Experimental test on Fe3Si(Mn) and Li.5Fe2.5O4 crystals as polarizers for slow neutrons. Phys. Scr. 21, 217–219.
Bjerrum Møller, H. & Nielson, M. (1970). Proceedings of IAEA panel meeting on instrumentation for neutron inelastic scattering research. Vienna: IAEA.
Blanc, Y. (1983). Le spectrometre à temps de vol IN6: characteristiques techniques et performances. ILL Internal Report No. 83BL21G. Institut Laue–Langevin, Grenoble, France.
Bonse, U. & Hart, M. (1965). Tailless X-ray single crystal reflection curves obtained by multiple reflection. Appl. Phys. Lett. 7, 238–240.
Bouchiat, M. A., Carver, T. R. & Varnum, C. M. (1960). Nuclear polarization in 3He gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett. 5, 373–375.
Brockhouse, B. N. (1958). Bull. Am. Phys. Soc. 3, 233.
Bührer, W. (1994). Triple axis instrument with doubly focusing (`zoom') monochromator and horizontally focusing analyser: seven years experience. Nucl. Instrum. Methods, A338, 44–52.
Caglioti, G., Paoletti, A. & Ricci, F. P. (1960). On resolution and luminosity of a neutron diffraction spectrometer for single crystal analysis. Nucl. Instrum. Methods, 9, 195–198.
Carlile, C. J., Hey, P. D. & Mack, B. J. (1977). High-efficiency Soller slit collimators for thermal neutrons. J. Phys. E, 10, 543–546.
Chen, H., Sharov, V. A., Mildner, D. F. R., Downing, R. G., Paul, R. L., Lindstrom, R. M., Zeissler, C. J. & Xiao, Q. F. (1995). Prompt gamma activation analysis enhanced by a neutron focusing capillary lens. Nucl. Instrum. Methods, B95, 107–114.
Chen-Mayer, H. H., Mildner, D. F. R., Sharov, V. A., Ullrich, J. B., Ponomarev, I. Yu. & Downing, R. G. (1996). Monolithic polycapillary neutron focusing lenses: experimental characterizations. J. Phys. Soc. Jpn, 65, Suppl. A, 319–321.
Chesser, N. J. & Axe, J. D. (1973). Derivation and experimental verification of the normalised resolution function for inelastic neutron scattering. Acta Cryst. A29, 160–169.
Christ, J. & Springer, T. (1962). Über die Entwicklung eines Neutronenleiters am FRM-Reaktor. Nukleonik, 4, 23–25.
Chupp, T. E., Coulter, K. P., Hwang, S. R., Smith, T. B. & Welsh, R. C. J. (1996). Progress toward a spin exchange pumped 3He neutron spin filter. J. Neutron Res. 5, 11–24.
Clementi, E. & Roetti, C. (1974). Roothan–Hartree–Fock atomic wave functions. At. Data Nucl. Data Tables, 14, 177–478.
Colegrove, F. D., Schearer, L. D. & Walters, K. (1963). Polarization of 3He gas by optical pumping. Phys. Rev. 132, 2561–2572.
Colwell, J. F., Miller, P. H. & Whittemore, W. L. (1968). A new high-efficiency time-of-flight system. Neutron inelastic scattering, Vol. II, IAEA Conference Proceedings, pp. 429–437. Vienna: IAEA.
Cooper, M. J. (1968). The resolution function in neutron diffractometry. IV. Application of the resolution function to the measurement of Bragg peaks. Acta Cryst. A24, 624–627.
Cooper, M. J. & Nathans, R. (1967). The resolution function in neutron diffractometry. I. The resolution function of a neutron diffractometer and its application to phonon measurements. Acta Cryst. 23, 357–367.
Cooper, M. J. & Nathans, R. (1968). The resolution function in neutron diffractometry. II. Experimental determination and properties of the `elastic two-crystal' resolution function. Acta Cryst. A24, 619–624.
Copley, J. R. D. (1991). Transmission properties of a counter-rotating pair of disk choppers. Nucl. Instrum. Methods, A303, 332–341.
Currat, R. (1973). The efficiency of vertically bent neutron monochromators. Nucl. Instrum. Methods, 107, 21–28.
Dabbs, J. W. T., Roberts, L. D. & Bernstein, S. (1955). Direct polarization of 115In nuclei; J value for 1.456 eV resonance. Report ORNL-CF-55-5-126. Oak Ridge National Laboratory, TN, USA.
Dash, J. G. & Sommers, H. S. (1953). A high transmission slow neutron velocity selector. Rev. Sci. Instrum. 24, 91–96.
Delapalme, A., Schweizer, J., Couderchon, G. & Perrier de la Bathie, R. (1971). Étude de l'alliage Heusler (Cu2MnAl) comme monochromateur de neutrons polarizés. Nucl. Instrum. Methods, 95, 589–594.
Desclaux, J. P. & Freeman, A. J. (1978). Dirac–Fock studies of some electronic properties of actinide ions. J. Magn. Magn. Mater. 8, 119–129.
Dorner, B. (1972). The normalization of the resolution function for inelastic neutron scattering and its applications. Acta Cryst. A28, 319–327.
Drabkin, G. M., Okorokov, A. I., Schebetov, A. F., Borovilova, N. V., Kugasov, A. G., Kudriashov, V. A., Runov, V. V. & Korneev, D. A. (1976). Multilayer Fe–Co mirror polarizing neutron guide. Nucl. Instrum. Methods, 133, 453–456.
Drabkin, G. M., Zabidarov, E. I., Kasman, Ya. A. & Okorokov, A. I. (1969). Investigation of a phase transition in nickel with polarized neutrons. Sov. Phys. JETP, 29, 261–266.
Egelstaff, P. A., Cocking, S. J. & Alexander, T. K. (1961). A four-rotor thermal-neutron analyser. Inelastic scattering of neutrons in solids and liquids, pp. 165–177. Vienna: IAEA.
Egorov, A. I., Lobashov, V. M., Nazarenko, V. A., Porsev, G. D. & Serebrov, A. P. (1974). Production, storage, and polarization of ultracold neutrons. Sov. J. Nucl. Phys. 19, 147–152.
Elsenhans, O., Böni, P., Friedli, H. P., Grimmer, H., Buffat, P., Leifer, K., Söchtig, J. & Anderson, I. S. (1994). Development of Ni/Ti multilayer supermirrors for neutron optics. Thin Solid Films, 246, 110–119.
Forsyth, J. B. (1979). Magnetic neutron scattering and the chemical bond. At. Energy Rev. 17, 345–412.
Forsyth, J. B. & Wells, M. (1959). On an analytic approximation to the atomic scattering factor. Acta Cryst. 12, 412–414.
Forte, M. & Zeyen, C. M. E. (1989). Neutron optical spin-orbit rotation in dynamical diffraction. Nucl. Instrum. Methods, A284, 147–150.
Freeman, A. J. & Desclaux, J. P. (1979). Dirac–Fock studies of some electronic properties of rare-earth ions. J. Magn. Magn. Mater. 12, 11–21.
Freeman, F. F. & Williams W. G. (1978). A 149Sm polarizing filter for thermal neutrons. J. Phys. E, 11, 459–467.
Freund, A. K. (1975). A neutron monochromator system consisting of deformed crystals with anisotropic mosaic structure. Nucl. Instrum. Methods, 124, 93–99.
Freund, A. K. (1976). Progress in neutron monochromator development at the Institut Laue–Langevin. Conference on Neutron Scattering. Report CONF-760601-p2, pp. 1143–1150. Oak Ridge National Laboratory, TN, USA.
Freund, A. K. (1983). Cross sections of materials used as neutron monochromators and filters. Nucl. Instrum. Methods, 213, 495–501.
Freund, A. K. (1985). On the wavelength dependence of neutron monochromator reflectivities. Nucl. Instrum. Methods, A238, 570–571.
Freund, A. K. & Forsyth, J. B. (1979). Materials problems in neutron devices. Neutron scattering, edited by G. Kostorz, pp. 462–507. New York: Academic Press.
Freund, A. K., Guinet, P., Maréschal, J., Rustichelli, F. & Vanoni, F. (1972). Cristaux á gradient de maille. J. Cryst. Growth, 13/14, 726.
Freund, A. K., Pynn, R., Stirling, W. G. & Zeyen, C. M. E. (1983). Vertically focusing Heusler alloy monochromators for polarized neutrons. Physica (Utrecht) B, 120, 86–90.
Frey, F. (1974). A packet of ideal-crystalline lamellae as neutron monochromator. Nucl. Instrum. Methods, 115, 277–284.
Gähler, R. & Golub, R. (1987). A high resolution neutron spectrometer for quasielastic scattering on the basis of spin-echo and magnetic resonance. Z. Phys. B, 65, 269–273.
Glättli, H. & Goldman, M. (1987). Nuclear magnetism. Methods of experimental physics, Vol. 23, Neutron scattering Part C, edited by K. Sköld & D. L. Price, pp. 241–286. New York: Academic Press.
Glinka, C. J., Rowe, J. M. & LaRock, J. G. (1986). The small-angle neutron scattering spectrometer at the National Bureau of Standards. J. Appl. Cryst. 19, 427–439.
Hamelin, B., Anderson, I., Berneron, M., Escoffier, A., Foltyn, T. & Hehn, R. (1997). Nucl. Instrum. Methods. Submitted.
Hautecler, S., Legrand, E., Vansteelandt, L., d'Hooghe, P., Rooms, G., Seeger, A., Schalt, W. & Gobert, G. (1985). Mibemol: a six chopper TOF spectrometer installed on a neutron guide at the Orphée reactor. Proceedings of the Conference on Neutron Scattering in the Nineties, Jülich, pp. 211–215. Vienna: IAEA.
Hayes, C., Lartigue, C., Copley, J. R. D., Alefeld, B., Mezei, F., Richter, D. & Springer, T. (1996). The focusing mirror at the ILL spin-echo spectrometer IN15; experimental results. J. Phys. Soc. Jpn, 65, Suppl. A, 312–315.
Hayter, J. B. & Mook, H. A. (1989). Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35–41.
Hayter, J. B., Penfold, J. & Williams, W. G. (1978). Compact polarizing Soller guides for cold neutrons. J. Phys. E, 11, 454–458.
Hiismäki, P. (1997). Modulation spectroscopy of neutrons with diffractometry applications. Singapore: World Science Publishing.
Hines, W. A., Menotti, A. H., Budnick, J. L., Burch, T. J., Litrenta, T., Niculescu, V. & Raj, K. (1976). Magnetization studies of binary and ternary alloys based on Fe3Si. Phys. Rev. B, 13, 4060–4068.
Hock, R., Vogt, T., Kulda, J., Mursic, Z., Fuess, H. & Magerl, A. (1993). Neutron backscattering on vibrating silicon crystals – experimental results on the neutron backscattering spectrometer IN10. Z. Phys. B, 90, 143–153.
Høghøj, P., Anderson, I. S., Ebisawa, T. & Takeda, T. (1996). Fabrication and performance of a large wavelength band multilayer monochromator. J. Phys. Soc. Jpn, 65, Suppl. A, 296–298.
Hossfeld, F., Amadori, R. & Scherm, R. (1970). Proceedings of Instrumentation for Neutron Inelastic Scattering, IAEA, Vienna, Austria, p. 117.
Hughes, D. J. & Burgy, M. T. (1951). Reflection of neutrons from magnetized mirrors. Phys. Rev. 81, 498–506.
Hutchings, M. T. & Windsor, C. G. (1987). Industrial applications of neutron scattering. In Methods of experimental physics, Vol. 23, Part C, edited by K. Sköld & D. L Price. New York: Academic Press.
Klein, A. G. & Werner, S. A. (1983). Neutron optics. Rep. Prog. Phys. 46, 259–335.
Koester, L. (1977). Neutron scattering lengths and fundamental neutron interactions. Springer Tracts in Modern Physics, Vol. 80, pp. 1–55. Berlin: Springer Verlag.
Koester, L., Rauch, H. & Seymann, E. (1991). Neutron scattering lengths: a survey of experimental data and methods. At. Data Nucl. Data Tables, 49, 65–120.
Koester, L., Waschkowski, W. & Meier, J. (1988). Experimental study on the electric polarizability of the neutron. Z. Phys. A329, 229–234.
Korneev, D. A. & Kudriashov, V. A. (1981). Experimental determination of the characteristics of a spin-flipper with a prolonged working area. Nucl. Instrum. Methods, 179, 509–513.
Lisher, E. J. & Forsyth, J. B. (1971). Analytic approximations to form factors. Acta Cryst. A27, 545–549.
Lushchikov, V. I., Taran, Yu. V. & Shapiro, F. L. (1969). Polarized proton target as neutron polarizer. Sov. J. Nucl. Phys. 10, 669–677.
Lynn, J. E. & Seeger, P. A. (1990). Resonance effects in neutron scattering lengths of rare-earth nuclides. At. Data Nucl. Data Tables, 44, 191–207.
Magerl, A., Liss, K.-D., Doll, C., Madar, R. & Steichele, E. (1994). Will gradient crystals become available for neutron diffraction? Nucl. Instrum. Methods, A338, 83–89.
Magerl, A. & Wagner, V. (1994). Editors. Focusing neutron optics. Nucl. Instrum. Methods, A338, 1–150.
Maier-Leibnitz, H. (1967). Einige Vorschläge für die Verwendung von zusammengesetzten Monochromatorkristallen für Neutronenbeugungs- und Streumessungen. Ann. Acad. Sci. Fenn. Ser. A, 267, 3–17.
Maier-Leibnitz, H. (1969). Summer School on Neutron Physics, Alushta. Dubna: Joint Institute of Nuclear Physics.
Maier-Leibnitz, H. & Rustichelli, F. (1968). German Patent No. 1816542.
Maier-Leibnitz, H. & Springer, T. (1963). The use of neutron optical devices on beam-hole experiments. J. Nucl. Energy A/B, 17, 217–225.
Majkrzak, C. F., Nunez, V., Copley, J. R. D., Ankner, J. F. & Greene, G. C. (1992). Supermirror transmission polarizers for neutrons. Neutron optical devices and applications, edited by C. F. Majkrzak & J. L. Wood, pp. 90–106. SPIE Proc. No. 1738. Bellingham, WA: SPIE.
Majkrzak, C. F. & Shirane, G. (1982). Polarized neutron spectrometer developments and experiments at Brookhaven. J. Phys. (Paris), 43, C7, 215–220.
Marx, D. (1971). Microguides for neutrons. Nucl. Instrum. Methods, 94, 533–536.
May, C., Klimanek, P. & Magerl, A. (1995). Plastic bending of thin beryllium blades for neutron monochromators. Nucl. Instrum. Methods, A357, 511–518.
Meardon, B. H. & Wroe, H. (1977). Report RL-77-059/A. Rutherford Laboratory, Oxon, England.
Meister, H. & Weckerman, B. (1972). A high resolution time focusing spectrometer for quasi-elastic neutron scattering. Proceedings of the Symposium on Inelastic Neutron Scattering of Neutrons in Solids and Liquids. Vienna: IAEA.
Meister, H. & Weckerman, B. (1973). Neutron collimators with plates of self-contracting foils. Nucl. Instrum. Methods, 108, 107–111.
Mezei, F. (1972). Neutron spin-echo: a new concept in polarized thermal neutron techniques. Z. Phys. 255, 146–160.
Mezei, F. (1976). Novel polarized neutron devices: supermirror and spin component amplifier. Commun. Phys. 1, 81–85.
Mezei, F. (1988). Very high reflectivity supermirrors and their applications. Thin film neutron optical devices: mirrors, supermirrors, multilayer monochromators, polarizers, and beam guides, edited by C. F. Majkrzak, pp. 10–17. SPIE Proc. No. 983. Bellingham, WA: SPIE.
Mildner, D. F. R. (1994). Neutron focusing optics for low-resolution small-angle scattering. J. Appl. Cryst. 27, 521–526.
Mitchell, P. W., Cowley, R. A. & Higgins, S. A. (1984). The resolution function of triple-axis neutron spectrometers in the limit of small scattering angles. Acta Cryst. A40, 152–160.
Mücklich, F. & Petzow, G. (1993). Development of beryllium single-crystal material for monochromator applications. Mineral processing & extractive metallurgy review, beryllium – issue. New York: Gordon and Breach.
Mughabghab, S. F. (1984). Neutron cross sections, Vol. 1, Part B: Z = 61–100. New York: Academic Press.
Mughabghab, S. F., Divadeenam, M. & Holden, N. E. (1981). Neutron cross sections, Vol. 1, Part A: Z = 1–60. New York: Academic Press.
Nielsen, M. & Bjerrum Møller, H. (1969). Resolution of a triple-axis spectrometer. Acta Cryst. A25, 547–550.
Nunes, A. C. (1974). A focusing low-angle neutron diffractometer. Nucl. Instrum. Methods, 119, 291–293.
Pickart, S. J. & Nathans, R. (1961). Unpaired spin density in ordered Fe3Al. Phys. Rev. 123, 1163–1171.
Pynn, R. (1975). Lorentz factor for triple-axis spectrometers. Acta Cryst. B31, 2555–2556.
Pynn, R. (1984). Reactor based neutron scattering instrumentation. Rev. Sci. Instrum. 55, 837–848.
Pynn, R., Fujii, Y. & Shirane, G. (1983). The resolution function of a perfect-crystal three-axis X-ray spectrometer. Acta Cryst. A39, 38–46. [There is an omission in equation (A3) of this reference; the relation [X_3 = k/\alpha_A] should be added.]
Reed, R. E., Bolling, E. D. & Harmon, H. E. (1973). Solid State Division Report, pp. 129–131. Oak Ridge National Laboratory, TN, USA.
Riste, T. (1970). Singly bent graphite monochromators for neutrons. Nucl. Instrum. Methods, 86, 1–4.
Robinson, R. A., Pynn, R. & Eckert, J. (1985). An improved constant-Q spectrometer for pulsed neutron sources. Nucl. Instrum. Methods, A241, 312–324.
Rossbach, M., Schärpf, O., Kaiser, W., Graf, W., Schirmer, A., Faber, W., Duppich, J. & Zeisler, R. (1988). The use of focusing supermirror neutron guides to enhance cold neutron fluence rates. Nucl. Instrum. Methods, B35, 181–190.
Schaerpf, O. (1975). Magnetic neutron guide tube for polarization of thermal neutrons with P = 97% irrespective of wavelength. J. Phys. E, 8, 268–269.
Schaerpf, O. (1989). Properties of beam bender type neutron polarizers using supermirrors. Physica (Utrecht) B, 156&157, 639–646.
Schaerpf, O. & Stuesser, N. (1989). Recent progress in neutron polarizers. Nucl. Instrum. Methods, A284, 208–211.
Schärpf, O. (1980). Neutron spin echo. Lecture notes in physics, Vol. 128, edited by F. Mezei, pp. 27–52. Heidelberg: Springer-Verlag.
Schärpf, O. & Capellmann, H. (1993). The xyz-difference method with polarized neutrons and the separation of coherent, spin-incoherent, and magnetic scattering cross sections in a multidetector. Phys. Status Solidi A, 135, 359–379.
Schefer, J., Medarde, M., Fischer, S., Thut, R., Koch, M., Fischer, P., Staub, U., Horisberger, M., Böttger, G. & Dönni, A. (1996). Sputtering method for improving neutron composite germanium monochromators. Nucl. Instrum. Methods, A372, 229–232.
Schelten, J. & Alefeld, B. (1984). Backscattering spectrometer with adapted Q-resolution at the pulsed neutron source. Report No. 1954, pp. 378–389. KFA Jülich, Germany.
Scherm, R., Dolling, G., Ritter, R., Schedler, E., Teuchert, W. & Wagner, V. (1977). A variable-curvature analyser crystal for three axis spectrometers. Nucl. Instrum. Methods, 143, 77–85.
Scherm, R. H. & Kruger, E. (1994). Bragg optics – focusing in real and k space. Nucl. Instrum. Methods, A338, 1–8.
Schmatz, W., Springer, T., Schelten, J. & Ibel, K. (1974). Neutron small-angle scattering: experimental techniques and applications. J. Appl. Cryst. 7, 96–116.
Schoenborn, B. P., Caspar, D. L. D. & Kammerer, O. F. (1974). A novel neutron monochromator. J. Appl. Cryst. 7, 508–510.
Sears, V. F. (1984). Thermal-neutron scattering lengths and cross sections for condensed-matter research. Report AECL-8490. Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
Sears, V. F. (1985). Local-field refinement of neutron scattering lengths. Z. Phys. A321, 443–449.
Sears, V. F. (1986a). Electromagnetic neutron–atom interactions. Phys. Rep. 141, 281–317.
Sears, V. F. (1986b). Neutron scattering lengths and cross sections. Methods of experimental physics, Vol. 23, Neutron scattering, Part A, edited by K. Sköld & D. L. Price, pp. 521–550. New York: Academic Press.
Sears, V. F. (1989). Neutron optics. Oxford University Press.
Sears, V. F. (1992a). Scattering lengths for neutrons. International tables for crystallography, Vol. C, edited by A. J. C. Wilson, pp. 383–391. Dordrecht: Kluwer Academic Publishers.
Sears, V. F. (1992b). Neutron scattering lengths and cross sections. Neutron News, 3, 26–37.
Sears, V. F. (1996). Correction of neutron scattering lengths for electromagnetic interactions. J. Neutron Res. 3, 53–62.
Sears, V. F. (1997). Bragg reflection in mosaic crystals. Acta Cryst. A53, 35–54.
Shapiro, S. M. & Chesser, N. J. (1972). Characteristics of pyrolytic graphite as an analyser and higher order filter in neutron scattering experiments. Nucl. Instrum. Methods, 101, 183–186.
Stedman, R. (1968). Energy resolution and focusing in inelastic scattering experiments. Rev. Sci. Instrum. 39, 878–883.
Steinberger, J. & Wick, G. C. (1949). On the polarization of slow neutrons. Phys. Rev. 76, 994–995.
Steinsvoll, O. (1973). The resolution function of a hybrid neutron spectrometer. Nucl. Instrum. Methods, 106, 453–459.
Surkau, R., Becker, J., Ebert, M., Grossman, T., Heil, W., Hofmann, D., Humblot, H., Leduc, M., Otten, E. W., Rohe, D., Siemensmeyer, K., Steiner, M., Tasset, F. & Trautmann, N. (1997). Realisation of a broad band neutron spin filter with compressed, polarized 3He gas. Nucl. Instrum. Methods, A384, 444–450.
Tasset, F. & Resouche, E. (1995). Optimum transmission for a 3He neutron polarizer. Nucl. Instrum. Methods, A359, 537–541.
Tindle, G. L. (1984). A new instrumental factor in triple-axis spectrometry and Bragg reflectivity measurements. Acta Cryst. A40, 103–107.
Turchin, V. F. (1965). Slow neutrons. Jerusalem: Israel Program for Scientific Translations.
Turchin, V. F. (1967). Deposited Paper, Atomic Energy 22.
Vogt, T., Passell, L., Cheung, S. & Axe, J. D. (1994). Using wafer stacks as neutron monochromators. Nucl. Instrum. Methods, A338, 71–77.
Wagner, V., Friedrich, H. & Wille, P. (1992). Performance of a high-tech neutron velocity selector. Physica (Utrecht) B, 180&181, 938–940.
Wagshul, M. E. & Chupp, T. E. (1994). Laser optical pumping of high-density Rb in polarized 3He targets. Phys. Rev. A, 49, 3854–3869.
Werner, S. A. (1971). Choice of scans in neutron diffraction. Acta Cryst. A27, 665–669.
Werner, S. A. & Klein, A. G. (1986). Neutron optics. Methods of experimental physics, Vol. 23, Neutron scattering, Part A, edited by K. Sköld and D. L. Price, pp. 259–337. New York: Academic Press.
Werner, S. A. & Pynn, R. (1971). Resolution effects in the measurement of phonons in sodium metal. J. Appl. Phys. 42, 4736–4749.
Williams, W. G. (1988). Polarized neutrons. Oxford Series on Neutron Scattering in Condensed Matter, Vol. 1. Oxford: Clarendon Press.
Wright, A. F., Berneron, M. & Heathman, S. P. (1981). Radial collimator system for reducing background noise during neutron diffraction with area detectors. Nucl. Instrum. Methods, 180, 655–658.
Young, H. D. (1962). Statistical treatment of experimental data. New York: McGraw–Hill.
Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: Wiley.
Zeyen, C. M. E. & Rem, P. C. (1996). Optimal Larmor precession magnetic field shapes: application to neutron spin echo three-axis spectrometry. Meas. Sci. Tech. 7, 782–791.