International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 5.2, pp. 491-504
https://doi.org/10.1107/97809553602060000596

Chapter 5.2. X-ray diffraction methods: polycrystalline

W. Parrish,a A. J. C. Wilsonb and J. I. Langfordc

aIBM Almaden Research Center, San Jose, CA, USA,bSt John's College, Cambridge CB2 1TP, England, and cSchool of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, England

References

Alexander, L. (1948). Geometrical factors affecting the contours of X-ray spectrometer maxima. I. Factors causing asymmetry. J. Appl. Phys. 19, 1068–1071.
Alexander, L. (1950). Geometrical factors affecting the contours of X-ray spectrometer maxima. II. Factors causing broadening. J. Appl. Phys. 21, 126–136.
Alexander, L. (1953). The effect of vertical divergence on X-ray powder diffraction lines. Br. J. Appl. Phys. 4, 92–93.
Alexander, L. (1954). The synthesis of X-ray spectrometer line profiles with application to crystallite size measurements. J. Appl. Phys. 25, 155–161.
Appleman, D. E. & Evans, H. T. (1973). Indexing and least-squares refinement of powder diffraction data. US Department of Commerce, National Technical Information Service, 5286 Port Royal Rd, Springfield, VA 22151, USA.
Barth, H. (1960). Möglichkeit der Präzisionsgitterkonstanten-messungen mit hochmonochromatischer Röntgenstrahlung. Acta Cryst. 13, 830–832.
Berkum, J. van, Sprong, G. J. M., de Keijser, Th. H., Delhez, R. & Sonneveld, E. J. (1995). The optimum standard specimen for X-ray diffraction line-profile analysis. Powder Diffr. 10, 129–139.
Beu, K. E. (1964). The evaluation of centroid lattice parameter data for tungsten by the likelihood ratio method. Acta Cryst. 17, 1149–1164.
Beu, K. E., Musil, F. J. & Whitney, D. R. (1962). Precise and accurate lattice parameters by film powder methods. I. The likelihood ratio method. Acta Cryst. 15, 1292–1301.
Beu, K. E., Musil, F. J. & Whitney, D. R. (1963). The likelihood ratio method for the precise and accurate determination of lattice parameters for tetragonal and hexagonal crystals. Acta Cryst. 16, 1241–1242.
Beu, K. E. & Whitney, D. R. (1967). Further developments in a likelihood ratio method for the precise and accurate determination of lattice parameters. Acta Cryst. 22, 932–933.
Boom, G. (1966). Accurate lattice parameters and the LPC method. Groningen: van Denderen.
Boom, G. & Smits, D. W. (1965). Calculation of Debye–Scherrer diffraction line profiles and their applications in precision determination of lattice parameters. Proc. K. Ned. Akad. Wet. Ser. B, 68, 46–52.
Bourdillon, A. J., Glazer, A. M., Hidaka, M. & Bordas, J. (1978). High-resolution energy-dispersive diffraction using synchrotron radiation. J. Appl. Cryst. 11, 684–687.
Buras, B., Olsen, J. S., Gerward, L., Will, G. & Hinze, E. (1977). X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Cryst. 10, 431–438.
Cheary, R. W. & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121.
Cheary, R. W. & Coelho, A. (1994). Synthesizing and fitting linear position-sensitive detector step-scanned line profiles. J. Appl. Cryst. 27, 673–681.
Chevallier, P., Travennier, M. & Briand, J. P. (1978). On the natural width of the Kα x-ray [sic] line observed at the energy threshold. J. Phys. B, 11, L171–L179.
Cohen, M. U. (1936a). Elimination of systematic errors in powder photographs. Z. Kristallogr. 94, 288–298.
Cohen, M. U. (1936b). Calculation of precise lattice constants for X-ray powder photographs. Z. Kristallogr. 94, 306–310.
Deslattes, R. D. & Henins, A. (1973). X-ray to visible wavelength ratios. Phys. Rev. Let. 31, 972–975.
Deslattes, R., Henins, A. & Kessler, E. G. (1980). Accuracy in X-ray wavelengths. Accuracy in powder diffraction, edited by S. Block & C. R. Hubbard, pp. 55–71. Natl Bur. Stand. (US) Spec. Publ. No. 567.
Dragoo, A. L. (1986). Standard reference materials for X-ray diffraction. Part I. Overview of current and future standard reference materials. Powder Diffr. 1, 294–304.
Edwards, H. J. & Toman, K. (1970). The additivity of variances in powder diffraction profile analysis. J. Appl. Cryst. 3, 165–171.
Fawcett, T. G., Crowder, C. E., Brownell, S. J., Zhang, Y., Hubbard, C., Schreiner, W., Hamill, G. P., Huang, T. C., Sabino, E., Langford, J. I., Hamilton, R. & Louër, D. (1988). Establishing an instrumental peak profile calibration standard for powder diffraction analyses: international round robin conducted by the JCPDS–ICDD and the US National Bureau of Standards. Powder Diffr. 3, 209–218.
Ferguson, I. F., Rogerson, A. H., Wolstenholme, J. F. R., Hughes, T. E. & Huyton, A. (1987). FIRESTAR-2. A computer program for the evaluation of X-ray powder measurements and the derivation of crystal lattice parameters. United Kingdom Atomic Energy Authority, Northern Division Report ND-R-909(S). London: HMSO, February 1987.
Fukamachi, T., Hosoya, S. & Terasaki, D. (1973). The precision of interplanar distances measured by an energy-dispersive X-ray diffractometer. J. Appl. Cryst. 6, 117–122.
Gale, B. (1963). The positions of Debye diffraction line peaks. Br. J. Appl. Phys. 14, 357–364.
Gale, B. (1968). The aberrations of a focusing X-ray diffraction instrument: second-order theory. Br. J. Appl. Phys. (J. Phys. D), 1, 393–408.
Giessen, B. C. & Gordon, G. E. (1968). X-ray diffraction: new high-speed technique based on X-ray spectroscopy. Science, 159, 973–975.
Gillham, C. J. (1971). Centroid shifts due to axial divergence and other geometrical factors in Seemann–Bohlin diffractometry. J. Appl. Cryst. 4, 498–506.
Gillham, C. J. & King, H. W. (1972). Measurements of centroid and peak shifts due to dispersion and the Lorentz factor at very high Bragg angles. J. Appl. Cryst. 5, 23–27.
Glazer, A. M., Hidaka, M. & Bordas, J. (1978). Energy-dispersive powder profile refinement using synchrotron radiation. J. Appl. Cryst. 11, 165–172.
Greenberg, B. (1989). Bragg's law with refraction. Acta Cryst. A45, 238–241.
Hart, M. (1981). Bragg angle measurement and mapping. J. Cryst. Growth, 55, 409–427.
Hart, M., Cernik, R., Parrish, W. & Toraya, H. (1990). Lattice parameter determination for powders using synchrotron radiation. J. Appl. Cryst. 23, 286–291.
Hart, M., Parrish, W., Bellotto, M. & Lim, G. S. (1988). The refractive-index correction in powder diffraction. Acta Cryst. A44, 193–197.
Huang, T. C. (1988). Precision peak determination in X-ray powder diffractometry. Aust. J. Phys. 41, 201–212.
Huang, T. C., Toraya, H., Blanton, T. N. & Wu, Y. (1993). X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Cryst. 26, 180–184.
Hubbard, C. R. (1983). New standard reference materials for X-ray powder diffraction. Adv. X-ray Anal. 26, 45–51.
Hubbard, C. R., Swanson, H. É. & Mauer, F. A. (1975). A silicon powder diffraction standard reference material. J. Appl. Cryst. 8, 45–48.
JCPDS–International Centre for Diffraction Data (1986). Task group on cell parameter refinement. Powder Diffr. 1, 66–76.
Jenkins, R. & Schreiner, W. N. (1986). Considerations in the design of goniometers for use in X-ray powder diffraction. Powder Diffr. 1, 305–319.
Kelly, E. H. (1988). A summary of a `round-robin' exercise comparing the output of computer programs for lattice-parameter refinement and calculations. British Crystallographic Association.
Kogan, V. A. & Kupriyanov, M. F. (1992). X-ray powder diffraction line profiles by Fourier synthesis. J. Appl. Cryst. 25, 16–25.
Ladell, J., Parrish, W. & Taylor, J. (1959). Interpretation of diffractometer line profiles. Acta Cryst. 12, 561–567.
Laguitton, D. & Parrish, W. (1977). Experimental spectral distribution versus Kramers' law for quantitative X-ray fluorescence by the fundamental parameters method. X-ray Spectrom. 6, 201–203.
Langford, J. I., Louër, D., Sonneveld, E. J. & Visser, J. W. (1986). Applications of total pattern fitting to a study of crystallite size and strain in powder zinc oxide. Powder Diffr. 1, 211–221.
Langford, J. I., Pike, E. R. & Beu, K. E. (1964). Precise and accurate lattice parameters by film powder methods. IV. Theoretical calculation of axial (vertical) divergence profiles, centroid shifts, and variances for cylindrical powder diffraction cameras. Acta Cryst. 17, 645–651.
Langford, J. I. & Wilson, A. J. C. (1962). Counter diffractometer: the effect of specimen transparency on the intensity, position and breadth of X-ray powder diffraction lines. J. Sci. Instrum. 39, 581–585.
Louër, D. & Langford, J. I. (1988). Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J. Appl. Cryst. 21, 430–437.
Mack, M. & Parrish, W. (1967). Seemann–Bohlin X-ray diffractometry. II. Comparison of aberrations and intensity with conventional diffractometer. Acta Cryst. 23, 693–700.
Mack, M. & Spielberg, N. (1958). Statistical factors in X-ray intensity measurements. Spectrochim. Acta, 12, 169–178.
Mantler, M. & Parrish, W. (1977). Energy dispersive X-ray diffractometry. Adv. X-ray Anal. 20, 171–186.
Mighell, A. D., Hubbard, C. R. & Stalick, J. K. (1981). NBS*EXAIDS83. A Fortran program for crystallographic data evaluation. Natl Bur. Stand. (US) Tech. Note, No. 1141, April 1981.
Mitra, G. B., Ahmed, A. & Das Gupta, P. (1985). Precise and accurate estimation of crystallographic parameters by maximum-likelihood and min–max methods. Structure and statistics in crystallography, edited by A. J. C. Wilson, pp. 151–181. Guilderland, NY: Adenine Press.
Nakajima, T., Fukamachi, T., Terasaki, O. & Hosoya, S. (1976). The detection of small differences in lattice constant at low temperature by an energy-dispersive X-ray diffractometer. J. Appl. Cryst. 9, 286–290.
Nelson, J. B. & Riley, D. P. (1945a). An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. London, 57, 160–177.
Nelson, J. B. & Riley, D. P. (1945b). An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. London, 57, 477–495.
Okazaki, A. & Kawaminami, M. (1973). Accurate measurement of lattice constant in a wide range of temperature: use of white X-rays and double-crystal diffractometry. Jpn. J. Appl. Phys. 12, 783–789.
Parrish, W. (1960). Results of the IUCr precision lattice-parameter project. Acta Cryst. 13, 838–850.
Parrish, W. (1988). Advances in synchrotron X-ray polycrystalline diffraction. Aust. J. Phys. 41, 101–112.
Parrish, W. & Hart, M. (1987). Advantages of synchrotron radiation for polycrystalline diffractometry. Z. Kristallogr. 179, 161–173.
Parrish, W., Hart, M., Huang, T. C. & Bellotto, M. (1987). Lattice-parameter determination using synchrotron powder data. Adv. X-ray Anal. 30, 373–382.
Parrish, W. & Huang, T. C. (1980). Accuracy of the profile fitting method for X-ray polycrystalline diffractometry. Natl Bur. Stand. (US) Spec. Publ. No. 457, pp. 95–110.
Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361.
Pike, E. R. (1957). Counter diffractometer – the effects of vertical divergence on the displacement and breadth of powder diffraction lines. J. Sci. Instrum. 34, 355–361.
Pike, E. R. & Wilson, A. J. C. (1959). Counter diffractometer – the theory of the use of centroids of diffraction profiles for high accuracy in the measurement of diffraction angles. Br. J. Appl. Phys. 10, 57–68.
Popović, S. (1973). Unit-cell dimension measurements from pairs of X-ray diffraction lines. J. Appl. Cryst. 6, 122–128.
Rietveld, H. M. (1967). Line profiles of neutron powder diffraction peaks for structure refinement. Acta Cryst. 22, 151–152.
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71.
Sandström, A. E. (1957). Experimental methods of X-ray spectroscopy: ordinary wavelengths. Handbuch der Physik, pp. 78–245 (esp. p. 157). Berlin: Springer.
Scardi, P., Lutterotti, L. & Maistrelli, P. (1994). Experimental determination of the instrumental broadening in Bragg–Brentano geometry. Powder Diffr. 9, 180–186.
Soller, W. (1924). A new precision X-ray spectrometer. Phys. Rev. 24, 158–167.
Sparks, C. J. & Gedcke, D. A. (1972). Rapid recording of powder diffraction patterns with Si(Li) X-ray energy analysis system: W and Cu targets and error analysis. Adv. X-ray Anal. 15, 240–253.
Spencer, R. C. (1931). Additional theory of the double X-ray spectrometer. Phys. Rev. 38, 618–629.
Spencer, R. C. (1935). The effect of the spectrometer on the width of spectral lines. Phys. Rev. 48, 473.
Spencer, R. C. (1937). A theorem on the effect of vertical divergence. Phys. Rev. 52, 761.
Spencer, R. C. (1939). The correction of experimental curves for the resolving power of the apparatus. Phys. Rev. 55, 239.
Spencer, R. C. (1941). Optimum design of physical apparatus. Phys. Rev. 60, 172.
Spencer, R. C. (1949). Discussion of ``Geometrical factors affecting X-ray spectrometer maxima''. J. Appl. Phys. 20, 413–414.
Taylor, A. & Sinclair, H. B. (1945a). The influence of absorption on the shapes and positions of lines in Debye–Scherrer powder photographs. Proc. Phys. Soc. London, 57, 108–125.
Taylor, A. & Sinclair, H. B. (1945b). On the determination of lattice parameters by the Debye–Scherrer method. Proc. Phys. Soc. London, 57, 126–135.
Thomsen, J. S. (1974). High-precision X-ray spectroscopy. X-ray spectroscopy, edited by L. V. Azaroff, pp. 26–132. New York: McGraw-Hill.
Thomsen, J. S. & Yap, F. Y. (1968a). Effect of statistical counting errors on wavelength criteria for X-ray spectra. J. Res. Natl Bur. Stand. Sect. A, 72, 187–205.
Thomsen, J. S. & Yap, F. Y. (1968b). Simplified method of computing centroids of X-ray profiles. Acta Cryst. A24, 702–703.
Timmers, J., Delhez, R., Tuinstra, F. & Peerdeman, F. (1992). X-ray tracing; a tool for improved accuracy in powder diffractometry. Accuracy in powder diffraction II. NIST Spec. Publ. No. 846, edited by E. Prince & J. K. Stalick, p. 217.
Toraya, H. (1986). Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffractometer data. J. Appl. Cryst. 19, 440–447.
Toraya, H. (1988). The deconvolution of overlapping reflections by the procedure of direct fitting. J. Appl. Cryst. 21, 192–196.
Wilkens, M. (1960). Zur Brechungskorrektur bei Gitterkonstantmessungen an Pulverpräparaten. Acta Cryst. 13, 826–828.
Wilson, A. J. C. (1940). On the correction of lattice spacings for refraction. Proc. Cambridge Philos. Soc. 36, 485–489.
Wilson, A. J. C. (1950). Geiger-counter X-ray spectrometer – influence of the size and absorption coefficient of the specimen on position and shape of powder diffraction maxima. J. Sci. Instrum. 27, 321–325.
Wilson, A. J. C. (1958). Effect of absorption on mean wavelength of X-ray emission lines. Proc. Phys. Soc. London, 72, 924–925.
Wilson, A. J. C. (1961). A note on peak displacements in X-ray diffractometry. Proc. Phys. Soc. London, 78, 249–255.
Wilson, A. J. C. (1962). Refraction broadening in powder diffractometer. Proc. Phys. Soc. London, 80, 303–305.
Wilson, A. J. C. (1963). Mathematical theory of X-ray powder diffractometry. Eindhoven: Centrex.
Wilson, A. J. C. (1965a). On variance as a measure of line broadening in diffractometry. IV. The effect of physical aberrations. Proc. Phys. Soc. London, 85, 171–176.
Wilson, A. J. C. (1965b). The location of peaks. Br. J. Appl. Phys. 16, 665–674.
Wilson, A. J. C. (1965c). Röntgenstrahlpulverdiffractometrie. Mathematische Theorie. Eindhoven: Centrex.
Wilson, A. J. C. (1967a). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion. Acta Cryst. 23, 888–898.
Wilson, A. J. C. (1968). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion: Corrigenda. Acta Cryst. A24, 478.
Wilson, A. J. C. (1969). Statistical variance of line-profile parameters. Measures of intensity, location and dispersion: Addenda. Acta Cryst. A25, 584–585.
Wilson, A. J. C. (1970a). Elements of X-ray crystallography. Reading, MA: Addison-Wesley.
Wilson, A. J. C. (1970b). Limitations on the additivity of moments in line-profile analysis. J. Appl. Phys. 3, 71–73.
Wilson, A. J. C. (1971). Some statistical considerations in the location of Mössbauer lines. Nucl. Instrum. Methods, 94, 225–227.
Wilson, A. J. C. (1973). Note on the aberrations of a fixed angle energy-dispersive diffractometer. J. Appl. Cryst. 6, 230–237.
Wilson, A. J. C. (1974). Powder diffractometry. X-ray diffraction, by L. V. Azaroff, R. Kaplow, N. Kato, R. Weiss, A. J. C. Wilson & R. A. Young, Chap. 6. New York: McGraw-Hill.
Wilson, A. J. C. (1980). Accuracy in methods of lattice-parameter measurement. Natl Bur. Stand. (US) Spec. Publ. No. 567, pp. 325–351.
Wilson, A. J. C. & Delf, B. W. (1961). Effects of variations in the quantum counting efficiency of detectors on the mean wavelengths of emission lines. Proc. Phys. Soc. London, 78, 1256–1258.
Wilson, A. J. C. & Lipson, H. (1941). The calibration of Debye–Scherrer X-ray powder cameras. Proc. Phys. Soc. London, 53, 245–250.
Wilson, A. J. C., Thomsen, J. S. & Yap, F. Y. (1965). Minimization of the variation of parameters derived from X-ray powder diffractometer line profiles. Appl. Phys. Lett. 7, 163–165.
Wong-Ng, W. & Hubbard, C. R. (1987). Standard reference materials for X-ray diffraction. Part II. Calibration using d-spacing standards. Powder Diffr. 2, 242–248.
Young, R. A. (1988). Pressing the limits of Rietveld refinement. Aust. J. Phys. 41, 294–310.
Zevin, L. S., Umanskij, M. M., Khejker, D. M. & Pančenko, J. M. (1961). The question of diffractometer methods of precision measurement of unit-cell parameters. Sov. Phys. Crystallogr. 6, 277–283.