Tables for
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C, ch. 8.1, pp. 678-688

Chapter 8.1. Least squares

E. Princea and P. T. Boggsb

aNIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, and bScientific Computing Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA


Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. & Sorenson, D. (1992). LAPACK user's guide, 2nd ed. Philadelphia: SIAM Publications.
Berger, J. O. & Wolpert, R. L. (1984). The likelihood principle. Hayward, CA: Institute of Mathematical Statistics.
Boggs, P. T., Byrd, R. H., Donaldson, J. R. & Schnabel, R. B. (1989). ODRPACK – software for weighted orthogonal distance regression. ACM Trans. Math. Softw. 15, 348–364.
Boggs, P. T., Byrd, R. H. & Schnabel, R. B. (1987). A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 8, 1052–1078.
Boggs, P. T. & Rogers, J. E. (1990). Orthogonal distance regression. Contemporary mathematics: statistical analysis of measurement error models and applications. Providence, RI: AMS.
Box, G. E. P., Hunter, W. G. & Hunter, J. S. (1978). Statistics for experimenters: an introduction to design, data analysis and model building. New York: John Wiley.
Box, G. E. P. & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.
Bunch, D. S., Gay, D. M. & Welsch, R. E. (1993). Algorithm 717: subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models. ACM Trans. Math. Softw. 19, 109–130.
Dennis, J. E. & Schnabel, R. B. (1983). Numerical methods for unconstrained optimization and nonlinear equations. Englewood Cliffs, NJ: Prentice Hall.
Donaldson, J. R. & Schnabel, R. B. (1986). Computational experience with confidence regions and confidence intervals for nonlinear least squares. Computer science and statistics. Proceedings of the Seventeenth Symposium on the Interface, edited by D. M. Allen, pp. 83–91. New York: North-Holland.
Draper, N. & Smith, H. (1981). Applied regression analysis. New York: John Wiley.
Fedorov, V. V. (1972). Theory of optimal experiments, translated by W. J. Studden & E. M. Klimko. New York: Academic Press.
Fuller, W. A. (1987). Measurement error models. New York: John Wiley & Sons.
Heath, M. T. (1984). Numerical methods for large, sparse, linear least squares problems. SIAM J. Sci. Stat. Comput. 5, 497–513.
Nash, S. & Sofer, A. (1995). Linear and nonlinear programming. New York: McGraw-Hill.
Prince, E. (1994). Mathematical techniques in crystallography and materials science, 2nd ed. Berlin: Springer.
Schwarzenbach, D., Abrahams, S. C., Flack, H. D., Prince, E. & Wilson, A. J. C. (1995). Statistical descriptors in crystallography. II. Report of a Working Group on Expression of Uncertainty in Measurement. Acta Cryst. A51, 565–569.
Stewart, G. W. (1973). Introduction to matrix computations. New York: Academic Press.