9.5. Typical interatomic distances: organic compounds

9.5.1. Introduction

The determination of molecular geometry is of vital importance to our understanding of chemical structure and bonding. The majority of experimental data have come from X-ray and neutron diffraction, microwave spectroscopy, and electron diffraction. Over the years, compilations of results from these techniques have appeared sporadically. The first major compilation was Chemical Society Special Publication No. 11: Tables of Interatomic Distances and Configuration in Molecules and Ions (Sutton, 1958). This volume summarized results obtained by diffraction and spectroscopic methods prior to 1956; a supplementary volume (Sutton, 1965) extended this coverage to 1959. Summary tables of bond lengths between carbon and other elements were also published in Volume III of International Tables for X-ray Crystallography (Kennard, 1962). Some years later, the Cambridge Crystallographic Data Centre (Allen, Bellard, Brice, Cartwright, Dubbleday, Higgs, Hummelink, Hummelink-Peters, Kennard, Motherwell, Rodgers & Watson, 1979) produced an atlas-style compendium of all organic, organometallic and metal-complex crystal structures published in the period 1960–1965 (Kennard, Watson, Allen, Isaacs, Motherwell, Pettersen & Town, 1972). More recently, a survey of geometries determined by spectroscopic methods (Harmony, Laurie, Kuczkowski, Schwendemann, Ramsay, Lovas, Lafferty & Maki, 1979) has extended coverage in this area to mid-1977.

The production of further comprehensive compendia of X-ray and neutron diffraction results has been precluded by the steep rise in the number of published crystal structures, as illustrated by Fig. 9.5.1.1. Printed compilations have been effectively superseded by computerized databases. In particular, the Cambridge Structural Database now (1991) contains bibliographic, chemical, and numerical results for some 86 000 organo-carbon crystal structures. This machine-readable file fulfills the function of a comprehensive structure-by-structure compendium of molecular geometries. However, the amount of data now held in the CSD is so large that there is also a need for concise, printed tabulations of average molecular dimensions.

The only tables of average geometry in general use are those contained in Sutton (1958, 1965) which list mean bond lengths for a variety of atom pairs and functional groups. Since these early tables were based on data obtained before 1960, we have used the CSD to prepare a new table of average bond lengths in organic compounds. Table 9.5.1.1 given here specifically lists average lengths for bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I. Mean values are presented for 682 different bond types involving these elements.

9.5.2. Methodology

9.5.2.1. Selection of crystallographic data

All results given in Table 9.5.1.1 are based on X-ray and neutron diffraction results retrieved from the September 1985 version of the CSD. Neutron diffraction data only were used to derive mean bond lengths involving H atoms. This version of the CSD contained results for 49 854 single-crystal diffraction studies of organo-carbon compounds; 10 324 of these satisfied the acceptance criteria listed below and were used in the averaging procedures:

(i) Structure is ‘organic’, i.e. belongs to the CSD chemical classes 1–65 or 70 (Cambridge Crystallographic Data Centre User Manual, 1978).

(ii) Atomic coordinates for the structure have been published and are available in the CSD.

(iii) Structure was determined from diffractometer data.

(iv) Structure does not contain unresolved numeric data errors from the original publication (such errors are usually typographical and are normally resolved by consultation with the authors).

(v) Structure was not reported to be disordered.

(vi) Only structures of higher precision were included on the basis of either (a) the crystallographic R factor was ≤ 0.07 and the reported mean estimated standard deviation (e.s.d.) of the C—C bond lengths was ≤ 0.010 Å (corresponds to AS flag = 1 or 2 in the CSD), or (b) the crystallographic R factor ≤ 0.05 and the mean e.s.d. for C—C bonds was not available in the database (AS = 0 in the CSD).

(vii) Where the structure of a given compound had been determined more than once within the limits of (i)–(vi), then only the most precise determination was used.

9.5.2.2. Program system

All calculations were performed on the University of Cambridge IBM 3081 D using the programs BIBSER, CONNSER, RETRIEVE, GEOM78, and PLUTO78 (Allen et al., 1979). A stand-alone program was written to implement the selection criteria, whilst a new program (STATS) was written to perform the statistical calculations described below. It was also necessary to modify CONNSER to improve the precision with which it locates chemical substructures. In particular, the program was altered to permit the location of atoms with specified coordination numbers. This was essential in the case of carbon so that atoms with coordination numbers 2, 3 and 4 (equivalent to formal hybridization states sp, sp2, sp3) could be distinguished easily and reliably. Considerable care was taken to ensure that the correct molecular fragment was located by GEOM78 in the generation of geometrical tabulations. This often involved the explicit specification of H atoms in fragments, and the extensive use of geometrical tests on valence and torsion angles. Considerable use was also made of chemical structural diagrams, which are available in the Cambridge in-house version.