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The diffraction of beams of X-rays from single crystals involves very specific

geometries that form the basis for the measurement of intensities used in crystal

structure analysis. In terms of the incident beam itself, the two key approaches

available involve either a monochromatic beam or a polychromatic ‘Laue’ white

beam. Starting from Bragg’s law and the Ewald reciprocal-space construction,

the methods for the collection of diffraction data, i.e. reflection intensities, using

commonly available apparatus are then described. Monochromatic beam

measuring methods such as rotating/oscillating crystal, stills, Weissenberg,

precession and four-circle diffractometry are covered. The mathematical rela-

tionships between the reciprocal-lattice point (relp) coordinates in reciprocal

space and the corresponding diffraction spot positions at the detector (flat,

cylindrical or V-shaped) are given in detail. These coordinate transformations

represent an idealized situation of relps (i.e. as points) and of diffracted rays as

lines. Deviations from ideality arise from practical considerations such as the

incident beam spectral purity, its divergence or convergence to the sample from

the source via the optics, as well as the crystal perfection (‘mosaicity’), and of the

point-spread factor of the detector. The reflection rocking curves and diffraction

spot shapes and sizes are practical manifestations of these effects.

In the chapter Classification of experimental techniques

(Helliwell, 2021) there are given the various common

approaches to the recording of X-ray crystallographic data, in

different geometries, for crystal structure analysis. These are:

(a) Laue geometry;

(b) monochromatic still exposure;

(c) rotation/oscillation geometry;

(d) Weissenberg geometry;

(e) precession geometry; and

(f) diffractometry.

The reasons for the choice of order are as follows. Laue

geometry is dealt with first because it was historically the first

to be used (Friedrich, Knipping & von Laue, 1912). Further-

more, in any case, the Laue method for quantitative structure

analysis has enjoyed a revival at synchrotron radiation (SR)

sources for time-resolved studies and is used extensively at

neutron sources. The Laue method thus has a modern rele-

vance. From consideration of the monochromatic still

geometry, we can then describe the cases of single-axis rota-

tion (rotation/oscillation method), single-axis rotation coupled

with detector translation (Weissenberg method), crystal and

detector precession (precession method), and finally three-

axis goniostat and rotatable detector or area detector

(diffractometry).

Where there are appropriate connections from the use of

X-rays we make some specific references to use of neutrons or

electrons.

Method (a) uses a polychromatic beam of broad wavelength

bandpass (e.g. 0.2 � � � 2.5 Å with X-rays and to even longer



wavelengths, e.g. 5 Å, with neutrons, which are not heavily

absorbed like X-rays at such wavelengths); if the bandwidth is

restricted (e.g. to ��/� = 0.2), then it is sometimes referred to

as narrow-bandpass Laue geometry. The remaining methods

(b)–(f) use a monochromatic beam.

There are textbooks that concentrate on almost every

geometry. References to these books are given in the

respective sections in the following pages. However, in addi-

tion, there are several books that contain extensive details of

diffraction geometry. Blundell & Johnson (1976), Drenth

(1994), Dauter & Wilson (2001) and Messerschmidt (2007)

describe the use of the various diffraction geometries with the

examples taken from protein crystallography. There is an

extensive discussion and many practical details to be found in

the textbooks of Stout & Jensen (1968), Woolfson (1970,

1997), Glusker & Trueblood (1971, 1985), Vainshtein (1981),

McKie & McKie (1986), Aslanov et al. (1998) and Shmueli

(2007), for example. A collection of early papers on the

diffraction of X-rays by crystals involving, inter alia, experi-

mental techniques and diffraction geometry, can be found in

Bijvoet et al. (1969, 1972). A collection of papers on, primarily,

protein and virus crystal data collection via the rotation-film

method and diffractometry can be found in Wyckoff et al.

(1985). Synchrotron instrumentation, methods and applica-

tions are dealt with in the books of Helliwell (1992) and

Coppens (1992).

Quantitative X-ray crystal structure analysis usually

involves methods (c), (d) and (f), although (e) has certainly

been used. Electronic area detectors or image plates are

extensively used now in all methods. Method (b), the use of

monochromatic X-ray stills, is now growing in its usage with

the advent of serial X-ray crystallography introduced at

X-ray free-electron lasers (XFELs) and adopted also now

at synchrotron X-ray sources [for a review see Patterson

(2014)].

Traditionally, Laue photography has mostly been used for

crystal orientation, crystal symmetry and mosaicity tests.

Rapid recording of Laue patterns using synchrotron radiation,

especially with protein crystals or with small crystals of small

molecules, has led to a revival of interest in the use of Laue

geometry for quantitative structure analysis. Various funda-

mental objections made, especially by W. L. Bragg, to the use

of Laue geometry have been shown not to be limiting. Reactor

neutron sources have also revived the Laue method for

intensity measurements and it is also used at spallation

neutron sources as a time-of-flight technique [see e.g. Forsyth

et al. (1988), Langan et al. (2004), Schultz et al. (2005) and

Tanaka et al. (2009)].

The monochromatic still photograph is typically used for

orientation setting and mosaicity tests, for protein or virus

crystallography, and computer refinement of crystal orienta-

tion following initial crystal setting. A ‘pink’ beam (�� ’

0.02 Å) is utilized for extracting more intensity from

synchrotron X-ray or reactor neutron sources whilst preser-

ving an essentially monochromatic still geometry. This type of

incident beam is readily achieved using a multilayer beamline

optical component.

Precession photography allows the isolation of a specific

zone or plane of reflections for which indexing can be

performed by inspection, and systematic absences and

symmetry are explored. From this, space-group assignment is

made. The use of precession photography is usually avoided

these days where auto-indexing methods are employed on a

single-crystal diffractometer. Inspection of zones of intensity

is still made available as a useful diagnostic on modern

diffractometers using the rotation method. The precession

method (without a layer-line screen) is enjoying a revival in

measurements made in electron crystallography (Vincent &

Midgley, 1994).

In the following sections, the geometry of each method is

dealt with in an idealized form. The practical realization of

each geometry is then dealt with, including any geometric

distortions introduced in the image by electronic area detec-

tors. A separate section deals with the common means for

beam conditioning, namely mirrors, monochromators and

filters. Sufficient detail is given to establish the magnitude of

the wavelength range, spectral spreads, beam divergence and

convergence angles, and detector effects. These values can

then be utilized along with the formulae given for the calcu-

lation of spot bandwidth, spot size and angular reflecting

range.

In each of these diffraction geometries the diffuse scattering

features between and underneath the Bragg peaks may be

discerned, depending on the sample, but specific steps are

taken for the measuring and the extraction of the diffuse

scattering intensities. For the pair distribution function (PDF)

method reference can be made to Billinge (2019). For a wide-

ranging review of diffuse scattering including a historical

summary for the last 100 years, including experimental

measurement protocols, see Welberry & Weber (2016).

Specific experimental details for measuring diffuse scattering

from crystals of biological macromolecules can be found for

example in Chapter 2.1 of Wall (1996) and in Glover et al.

(1991).

1. Laue geometry

The main book dealing with Laue geometry is Amorós et al.

(1975). This can usefully be used in conjunction with Henry et

al. (1951), or McKie & McKie (1986); see also Chapter 7 of

Helliwell (1992), Chapter 8 of Messerschmidt (2007) and

Chapter 4 of Shmueli (2007). There is a synergy between

synchrotron and reactor neutron Laue diffraction develop-

ments (see Helliwell & Wilkinson, 1994).

I mention here that the discussion below focuses on the use

of flat-plate geometry, but where exceptions are used today

then these are mentioned explicitly and a reference is given.

1.1. General

The single crystal is bathed in a polychromatic beam of

X-rays containing wavelengths between �min and �max. A

particular crystal plane will pick out a general wavelength �
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for which constructive interference occurs and reflect

according to Bragg’s law

� ¼ 2d sin �; ð1Þ

where d is the interplanar spacing and � is the angle of

reflection. A sphere drawn with radius 1/� and with the beam

direction as diameter, passing through the origin of the reci-

procal lattice (the point O in Fig. 1), will yield a reflection in

the direction drawn from the centre of the sphere and out

through the reciprocal-lattice point (relp) provided the relp in

question lies on the surface of the sphere. This sphere is

known as the Ewald sphere. Fig. 1 shows the Laue geometry, in

which there exists a nest of Ewald spheres of radii between

1/�max and 1/�min. An alternative convention is feasible

whereby only a single Ewald sphere is drawn of radius 1

reciprocal-lattice unit (r.l.u.). Then each relp is no longer a

point but a streak between �min/d and �max/d from the origin

of reciprocal space (see McKie & McKie, 1986, p. 297). In the

following discussions on the Laue approach, this notation is

not followed. We use the nest of Ewald spheres of varying

radii instead.

Any relp (hkl) lying in the region of reciprocal space

between the 1/�max and 1/�min Ewald spheres and the reso-

lution sphere 1/dmin will diffract (the shaded area in Fig. 1).

This region of reciprocal space is referred to as the

accessible or stimulated region. Fig. 2 shows a predicted Laue

pattern from a well aligned protein crystal. For a description of

the indexing of a Laue photograph, see Bragg (1928, pp. 28,

29).

For a Laue spot at a given �, only the ratio �/d is deter-

mined, and whether it is a single or a multiple relp component

spot. If the unit-cell parameters are known from a mono-

chromatic experiment, then a Laue spot at a given � yields �

since d is then known. Conversely, precise unit-cell lengths

cannot be determined from a Laue pattern alone; methods

are, however, available to help determine these (see Carr et al.,

1992).

The maximum Bragg angle �max is given by the equation

�max ¼ sin� 1ð�max=2dminÞ: ð2Þ

1.2. Crystal setting

The main use of Laue photography has in the past been for

adjustment of the crystal to a desired orientation. With small-

molecule crystals, the number of diffraction spots on a

monochromatic photograph from a stationary crystal is very

small. With unfiltered, polychromatic radiation, many more

spots are observed and so the Laue photograph can give a

clear indication of the crystal orientation and setting.

Currently, with small-molecule or protein crystals for structure

determination, the monochromatic still or small-angular-range

rotation diffraction image is used for this purpose before data

collection via an area detector. Synchrotron-radiation Laue

photographs of protein crystals can be recorded with ultra-

short exposure times such as into the sub-nanosecond range

(Moffat, 2001). For a review see Ren et al. (1999). These

patterns consist of a large number of diffraction spots. There

has been a trend to narrower wavelength bandpasses to

optimize intensity signal to noise and this leads to fewer

diffraction spots. This can lead to auto-indexing difficulties in

determining the crystal setting.

Crystal setting via Laue photography usually involves trying

to direct the X-ray beam along a zone axis. Angular mis-

setting angles " in the spindle and arc are easily calculated

from the formula

" ¼ tan� 1ð�=DÞ; ð3Þ

where � is the distance (resolved into vertical and horizontal)

from the beam centre to the centre of a circle of spots defining

a zone axis and D is the crystal-to-film distance.

After suitable angular correction to the sample orientation,

the Laue photograph will show a pronounced blank region at

the centre of the film (see Fig. 2). This radius of the blank

region is determined by the minimum wavelength in the beam

and the magnitude of the reciprocal-lattice spacing parallel to

the X-ray beam (see Jeffery, 1958). For the case, for example,

of the X-ray beam perpendicular to the a*b* plane, then

�min ¼ cð1 � cos 2�Þ; ð4aÞ
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Figure 1
Laue geometry. A polychromatic beam containing wavelengths �min to
�max impinges on the crystal sample. The resolution sphere of radius
d�max ¼ 1=dmin is drawn centred at O, the origin of reciprocal space. Any
reciprocal-lattice point falling in the shaded region is stimulated. In this
diagram, the radius of each Ewald sphere uses the convention 1/�. Note
the restriction on the resolution limit occurring because of the flat plate,
whereas with a cylindrical geometry one can record diffraction data for
larger 2� angles and increase the resolution limit. The cylindrical neutron
sensitive image plate is actively used today for macromolecular neutron
crystallography diffraction data collection at reactor neutron sources (see
Blakeley, 2009) where a LAue DIffractometer (‘LADI’) instrument
reaches 2� measurements of 180�. Historically such a ‘wrap around’
cylindrical geometry was the basis of both the original ‘Bernal rotation
camera’ and the original ‘Weissenberg camera’ used in the past
with photographic film for X-ray diffraction measurements from small-
molecule organic and inorganic crystals.



where

2� ¼ tan� 1ðR=DÞ; ð4bÞ

where R is the radius of the blank region (see Fig. 2) and D is

the crystal-to-flat-film distance. If �min is known then an

approximate value of c, for example, can be estimated. The

principal zone axes will give the largest radii for the central

blank region.

The treatment above is for when the incident X-ray beam is

able to pass through the sample, i.e. in what is referred to as

transmission Laue diffraction. For the cases of huge crystals of

inorganic/small-molecule materials transmission of the X-ray

beam does not occur and crystal setting is then made in a

‘back-reflection’ mode of measurement. This is used by crystal

growers targetting industrial applications of such large crys-

tals. See e.g. Amorós et al. (1975), pp. 103–105.

1.3. Single-order and multiple-order reflections

In Laue geometry, several relp’s can occur in a Laue spot or

ray. The number of relp’s in a given spot is called the multi-

plicity of the spot. The number of spots of a given multiplicity

can be plotted as a histogram. This is known as the multiplicity

distribution. The form of this distribution is dependent on the

ratio �max/�min. The multiplicity distribution in Laue diffrac-

tion is considered in detail by Cruickshank et al. (1987).

Any relp nh, nk, nl (n integer) will be stimulated by a

wavelength �/n since dnhnknl = dhkl/n, i.e.

�

n
¼ 2

dhkl

n
sin �: ð5Þ

However, dnhnknl must be within the sample resolution limit.

If h, k, l have no common integer divisor and if 2h, 2k, 2l is

beyond the resolution limit, then the spot on the Laue

diffraction photograph is a single-wavelength spot. The

probability that h, k, l have no common integer divisor is

Q ¼ 1 �
1

23

� �

1 �
1

33

� �

1 �
1

53

� �

. . .

¼ 0:832 . . . : ð6Þ

Hence, for a relp where dmin < dhkl < 2dmin there is a very high

probability (83.2%) that the Laue spot will be recorded as a

single-wavelength spot. Since this region of reciprocal space

corresponds to 87.5% (i.e. 7/8) of the volume of reciprocal

space within the resolution sphere then 0.875 � 0.832 = 72.8%

is the probability for a relp to be recorded in a single-

wavelength spot. According to W. L. Bragg, all Laue spots

should be multiple. He reasoned that for each h, k, l there will

always be a 2h, 2k, 2l etc. lying within the same Laue spot.

However, as the resolution limit is increased to accommodate

this many more relp’s are added, for which their hkl’s have no

common integer divisor.

The above discussion holds for infinite bandwidth. The

effect of a more experimentally realistic bandwidth is to

increase the proportion of single-wavelength spots.

The number of relp’s within the resolution sphere is

4

3

�d�3max

V�
; ð7Þ

where d�max = 1/dmin and V* is the reciprocal unit-cell volume.
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Figure 2
A predicted Laue pattern of a protein crystal with a zone axis parallel to the incident, polychromatic X-ray beam. There is a pronounced blank region at
the centre of the film (see Section 1.2). The spot marked N is one example of a nodal spot (see Section 1.4).



The number of relp’s within the wavelength band �max to

�min, for �max < 2=d�max, is (Moffat et al., 1986)

�

4

ð�max � �minÞd
�4
max

V�
: ð8Þ

Note that the number of relp’s stimulated in a 0.1 Å wave-

length interval, for example between 0.1 and 0.2 Å, is the same

as that between 1.1 and 1.2 Å, for example. A large number of

relp’s are stimulated at one orientation of the crystal sample.

The proportion of relp’s within a sphere of small d* (i.e. at

low resolution) actually stimulated is small. In addition, the

probability of them being single is zero in the infinite-

bandwidth case and small in the finite-bandwidth case.

However, Laue geometry is an efficient way of measuring a

large number of relp’s between d�max and d�max=2 as single-

wavelength spots. In any case multiplet spots are now readily

deconvoluted to their single component intensities where

there are enough observations e.g. from various crystal

orientations (see Nieh et al., 1999, and Ren et al., 1999).

The above is a brief description of the overall multiplicity

distribution. For a given relp, even of simple hkl values, lying

on a ray of several relp’s (multiples of hkl), a suitable choice

of crystal orientation can yield a single-wavelength spot.

Consider, for example, a spot of multiplicity 5. The outermost

relp can be recorded at long wavelength with the inner relp’s

on the ray excluded since they need �’s greater than �max (Fig.

3). Alternatively, by rotating the sample, the innermost relp

can be measured uniquely at short wavelength with the outer

relp’s excluded (they require �’s shorter than �min). The

multiplicity distribution is shown in Fig. 4 as a function of �max/

�min (with the corresponding values of ��/�mean).

1.4. Angular distribution of reflections in Laue diffraction

There is an interesting variation in the angular separations

of Laue reflections that shows up in the spatial distributions of

spots on a detector plane (Cruickshank et al., 1991). There are

two main aspects to this distribution, which are general and

local. The general aspects refer to the diffraction pattern as a

whole and the local aspects to reflections in a particular zone

of diffraction spots.

The general features include the following. The spatial

density of spots is everywhere proportional to 1/D2, where D is
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Figure 4
The variation with M = �max/�min of the proportions of relp’s lying on single, double and triple rays for the case �max < 2=d�max. From Cruickshank et al.
(1987).

Figure 3
A multiple component spot in Laue geometry. A ray of multiplicity 5 is
shown as an example. The inner point A corresponds to d and a wave-
length �, the next point, B, is d/2 and wavelength �/2. The outer point E
corresponds to d/5 and �/5. Rotation of the sample will either exclude
inner points (at the �max surface) or outer points (at the �min surface) and
so determine the recorded multiplicity.



the crystal-to-detector distance, and to 1/V*, where V* is the

reciprocal-cell volume. There is also though a substantial

variation in spatial density with diffraction angle �; a promi-

nent maximum occurs at

�c ¼ sin� 1ð�mind�max=2Þ: ð9Þ

Local aspects of these patterns particularly include the

prominent conics on which Laue reflections lie. That is, the

local spatial distribution is inherently one-dimensional in

character. Between multiple reflections (nodals), there is

always at least one single and therefore nodals have a larger

angular separation from their nearest neighbours. The blank

area around a nodal in a Laue pattern (Fig. 2) has been noted

by Jeffery (1958). The smallest angular separations, and

therefore spatially overlapped cases, are associated with single

Laue reflections. Thus, the reflections involved in energy

overlaps – the multiples – form a set largely distinct, except

at short crystal-to-detector distances, from those involved

in spatial overlaps, which are mostly singles (Helliwell,

1985).

From a knowledge of the form of the angular distribution, it

is possible, e.g. from the gaps bordering conics, to estimate

d�max and �min. A development of this involving gnomonic

projections can be even more effective (Cruickshank et al.,

1992).

1.5. Gnomonic and stereographic transformations

A useful means of transformation of the flat-detector Laue

pattern is the gnomonic projection. This converts the pattern

of spots lying on curved arcs to points lying on straight lines.

The stereographic projection is also used. Fig. 5 shows the

graphical relationships involved [taken from International

Tables for X-ray Crystallography, Vol. II (Evans & Lonsdale,

1959)], for the case of a Laue pattern recorded on a plane film,

between the incident-beam direction SN, which is perpendi-

cular to the film plane, and the Laue spot L, and its spherical,

stereographic and gnomonic points Sp, St and G and the

stereographic projection Sr of the reflected beams. If the

radius of the sphere of projection is taken equal to D, the

crystal-to-film distance, then the planes of the gnomonic

projection and of the film coincide. The lines producing the

various projection poles for any given crystal plane are

coplanar with the incident and reflected beams. The trans-

formation equations are

PL ¼ D tan 2� ð10Þ

PG ¼ D cot � ð11Þ

PS ¼ D
cos �

ð1þ sin �Þ
ð12Þ

PR ¼ D tan �: ð13Þ

2. Monochromatic methods

In this section and those that follow, which deal with mono-

chromatic methods, the convention is adopted that the Ewald

sphere takes a radius of unity and the magnitude of the

reciprocal-lattice vector is �/d. This is not the convention used

in the Laue section above.

Some historical remarks are useful first before progressing

to discuss each monochromatic geometry in detail. The

original rotation method (for example, see Bragg, 1949)

involved a rotation of a perfectly aligned crystal through 360�.

For reasons of relatively poor collimation of the X-ray beam,

leading to spot-to-spot overlap, and background build-up,

Bernal (1927) introduced the oscillation method whereby a

repeated, limited, angular range was used to record one

pattern and a whole series of contiguous ranges on different

film exposures were collected to provide a large angular

coverage overall. In a different solution to the same problem,

Weissenberg (1924) utilized a layer-line screen to record only

one layer line but allowed a full rotation of the crystal but now

coupled to translation of the detector, thus avoiding spot-to-

spot overlap. Again, several exposures were needed, involving

one layer line collected on each exposure. The advent of

synchrotron radiation with very high intensity allows small

beam sizes at the sample to be practicable, thus simultaneously

creating small diffraction spots and minimizing background

scatter. The very fine collimation of the synchrotron beam

keeps the diffraction-spot sizes as small as possible as they

traverse their path to the detector plane (see Section 7.3),

whichever diffractometer or camera setup is used.

The terminology used today for different methods is

essentially the same as originally used except that the rotation

method now tends to mean limited angular ranges (instead of

360�) per diffraction photograph/image. The Weissenberg

method in its modern form as has been employed at a

synchrotron is a screenless technique with limited angular

range but still with detector translation coupled to crystal

rotation.
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Figure 5
Geometrical principles of the spherical, stereographic, gnomonic and
Laue projections. From Evans & Lonsdale (1959).



2.1. Monochromatic still exposure

In a monochromatic still exposure, the crystal is held

stationary and a near-zero wavelength bandpass (e.g. ��/� =

0.001) beam impinges on it. For a small-molecule crystal, there

are few diffraction spots. For a protein crystal, there are many

(several hundred), because of the much denser reciprocal

lattice. The actual number of stimulated relp’s depends on the

reciprocal-cell parameters, the size of the mosaic spread of the

crystal, the angular beam divergence as well as the small, but

finite, spectral spread, ��/�. Diffraction spots are only partially

stimulated instead of fully integrated over wavelength, as in

the Laue method, or over an angular rotation (the rocking

width) in rotating-crystal monochromatic methods.

The diffraction spots lie on curved arcs where each curve

corresponds to the intersection of a cone with a film (or

detector). With a flat film the intersections are conic sections.

The curved arcs are most obviously recognizable for the

protein crystal case where there are a large number of spots.

2.2. Crystal setting

Crystal setting follows the procedure given in Section 1.2

whereby angular mis-setting angles are given by equation (3).

When viewed down a zone axis, the pattern on the detector

has the appearance of a series of concentric circles. For

example, with the beam parallel to ½00�1�, the first circle

corresponds to l = 1, the second to l = 2, etc. The radius of the

first circle R is related to the interplanar spacing between the

(hk0) and (hk1) planes, i.e. �/c (in this example), through �, by

the formulae

tan 2� ¼ R=D; cos 2� ¼ 1 � �=c: ð14Þ
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Figure 6
(a) Elevation of the sphere of reflection. O is the origin of the reciprocal lattice. C is the centre of the Ewald sphere. The incident beam is shown in the
plane. (b) Plan of the sphere of reflection. R is the projection of the rotation axis on the equatorial plane. (c) Perspective diagram. P is the relp in the
reflection position with the cylindrical coordinates �, �, ’. The angular coordinates of the diffracted beam are �, �. (d) Stereogram to show the direction
of the diffracted beam, �, �, with DD0, normal to the incident beam and in the equatorial plane, as the projection diameter. From Evans & Lonsdale
(1959).



3. Rotation/oscillation geometry

The main book dealing with the rotation method is that of

Arndt & Wonacott (1977).

3.1. General

The purpose of the monochromatic rotation method is to

stimulate a reflection fully over its rocking width via an

angular rotation. Different relp’s are rotated successively into

the reflecting position. The method, therefore, involves rota-

tion of the sample about a single axis, and is used in

conjunction with an area detector of some sort, e.g. a charge-

coupled device (CCD) or pixel area detector or image plate.

The use of a repeated rotation or oscillation, for a given

exposure, is simply to average out any time-dependent

changes in incident intensity or sample decay. The overall

crystal rotation required to record the total accessible region

of reciprocal space for a single crystal setting, and a detector

picking up all the diffraction spots, is 180� + 2�max. If the

crystal has additional symmetry, then a complete asymmetric

unit of reciprocal space can be recorded within a smaller angle.

There is a blind region close to the rotation axis; this is

detailed in Section 3.5.

3.2. Diffraction coordinates

Fig. 6(a) to (d) are taken from International Tables for

X-ray Crystallography Vol. II (1959, p. 176). They neatly

summarize the geometrical principles of reflection of a

monochromatic beam, in the reciprocal lattice, for the general

case of an incident beam inclined at an angle (�) to the

equatorial plane. The diagrams are based on an Ewald sphere

of unit radius.

With the nomenclature of Table 1:

Fig. 6(a) gives

sin � ¼ sin�þ �: ð15Þ

Fig. 6(b) gives, by the cosine rule,

cos � ¼
cos2 �þ cos2 � � �2

2 cos � cos�
ð16Þ

and

cos � ¼
cos2 �þ �2 � cos2 �

2� cos�
; ð17Þ

and Fig. 6(a) and (b) give

�2 þ �2 ¼ d�2 ¼ 4 sin2 �: ð18Þ

The following special cases commonly occur:

(a) � = 0, normal-beam rotation method, then

sin � ¼ � ð19Þ

and

cos � ¼
2 � �2 � �2

2 1 � �2ð Þ
1=2

; ð20Þ

(b) � = � �, equi-inclination (relevant to Weissenberg

upper-layer photography), then

� ¼ � 2 sin� ¼ 2 sin � ð21Þ

cos � ¼ 1 �
�2

2 cos2 �
; ð22Þ

(c) � = +�, anti-equi-inclination

� ¼ 0 ð23Þ

cos � ¼ 1 �
�2

2 cos2 �
; ð24Þ

(d) � = 0, flat cone

� ¼ � sin� ð25Þ
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Table 1
Glossary of symbols used to specify quantities on diffraction patterns and in reciprocal space.

The equatorial plane is the plane normal to the rotation axis.

� Bragg angle

2� Angle of deviation of the reflected beam with respect to the incident beam

Ŝo Unit vector lying along the direction of the incident beam

Ŝ Unit vector lying along the direction of the reflected beam

s = ðŜ � ŜoÞ The scattering vector of magnitude 2 sin �. s is perpendicular to the bisector of the angle between Ŝo and Ŝ. s is identical to the reciprocal-lattice
vector d* of magnitude �/d, where d is the interplanar spacing, when d* is in the diffraction condition. In this notation, the radius of the Ewald
sphere is unity. This convention is adopted because it follows that in Volume II of International Tables for X-ray Crystallography (p. 175). Note
that in Section 1 Laue geometry the alternative convention (|d*| = 1/d) is adopted whereby the radius of each Ewald sphere is 1/�. This allows a
nest of Ewald spheres between 1=�max and 1=�min to be drawn

� Coordinate of a point P in reciprocal space parallel to a rotation axis as the axis of cylindrical coordinates relative to the origin of reciprocal space

� Radial coordinate of a point P in reciprocal space; that is, the radius of a cylinder having the rotation axis as axis

� The angular coordinate of P, measured as the angle between � and Ŝo [see Fig. 6(b)]

’ The angle of rotation from a defined datum orientation to bring a relp onto the Ewald sphere in the rotation method (see Fig. 8)

� The angle of inclination of Ŝo to the equatorial plane

� The angle between the projections of Ŝo and Ŝ onto the equatorial plane

� The angle of inclination of Ŝ to the equatorial plane

!, �, ’ The crystal setting angles on the four-circle diffractometer (see Fig. 11). The ’ used here is not the same as that in the rotation method (Fig. 8). This
clash in using the same symbol twice is inevitable because of the widespread use of the rotation camera and four-circle diffractometer



cos � ¼
2 � �2 � �2

2 1 � �2ð Þ
1=2
: ð26Þ

In this section, we will concentrate on case (a), the normal-

beam rotation method (� = 0). First, the case of a plane film or

detector is considered.

The notation now follows that of Arndt & Wonacott (1977)

for the coordinates of a spot on the film or detector. ZF is

parallel to the rotation axis and �. YF is perpendicular to the

rotation axis and the beam. International Tables for X-ray

Crystallography Vol. II (1959, p. 177) follows the convention

of y being parallel and x perpendicular to the rotation-axis

direction, i.e. (YF, ZF) � (x, y). The advantage of the (YF, ZF)

notation is that the x-axis direction is then the same as the

X-ray beam direction.

The coordinates of a reflection on a flat film (YF, ZF) are

related to the cylindrical coordinates of a relp (�, �) [Fig. 7(a)]

by

YF ¼ D tan � ð27Þ

ZF ¼ D sec � tan �; ð28Þ

which becomes

ZF ¼ 2D�=ð2 � �2 � �2Þ; ð29Þ

where D is the crystal-to-film distance.

For the case of a V-shaped cassette with the V axis parallel

to the rotation axis and the film making an angle � to the beam

direction [Fig. 7(b)], then

YF ¼ D tan �=ðsin �þ cos � tan �Þ ð30Þ

ZF ¼ ðD � YF cos �Þ�=ð1 � d�2=2Þ: ð31Þ

This situation also corresponds to the case of a flat electronic

area detector inclined to the incident beam in a similar way.

Note that Arndt & Wonacott (1977) use � instead of � here.

We use � and so follow International Tables for X-ray Crys-

tallography Vol. II (1959). This avoids confusion with the � of

Table 1. D is the crystal to V distance. In the case of the V

cassettes of Enraf–Nonius, � is 60�.

For the case of a cylindrical film or image plate where the

axis of the cylinder is coincident with the rotation axis [Fig.

7(c)] then, for � in degrees,

YF ¼
2�

360
D� ð32Þ

ZF ¼ D tan �; ð33Þ

which becomes

ZF ¼
D�

1 � �2ð Þ
1=2
: ð34Þ

Here, D is the radius of curvature of the cylinder assuming

that the crystal is at the centre of curvature.

In the three geometries mentioned here, detector-

misalignment errors have to be considered. These are three

orthogonal angular errors, translation of the origin, and error

in the crystal-to-film distance.

The coordinates YF and ZF are related to film-scanner raster

units via a scanner-rotation matrix and translation vector. This

is necessary because the film is placed arbitrarily on the

scanner drum. Details can be found in Rossmann (1985) or

Arndt & Wonacott (1977).
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Figure 7
Geometrical principles of recording the pattern on (a) a plane detector,
(b) a V-shaped detector, (c) a cylindrical detector.



3.3. Relationship of reciprocal-lattice coordinates to crystal

system parameters

The reciprocal-lattice coordinates �, �, �, � etc. used earlier,

refer to an axial system fixed to the crystal, X0Y0Z0 of Fig. 8.

Clearly, a given relp needs to be brought into the Ewald

sphere by the rotation about the rotation axis. The treatment

here follows Arndt & Wonacott (1977).

The rotation angle required, ’, is with respect to some

reference ‘zero-angle’ direction and is determined by the

particular crystal parameters. It is necessary to define a stan-

dard orientation of the crystal (i.e. datum) when ’ = 0�. If we

define an axial system X0Y0Z0 fixed to the crystal and a

laboratory axis system XYZ with X parallel to the beam and Z

coincident with the rotation axis, then ’ = 0� corresponds to

these axial systems being coincident (Fig. 8).

The angle of the crystal at which a given relp diffracts is

tanð’=2Þ ¼
2y0 � ð4y2

0 þ 4x2
0 � d�4Þ

1=2

ðd�2 � 2x0Þ
: ð35Þ

The two solutions correspond to the two rotation angles at

which the relp P cuts the sphere of reflection. Note that YF, ZF

(Section 3.2) are independent of ’.

The values of x0 and y0 are calculated from the particular

crystal system parameters. The relationships between the

coordinates x0, y0, z0 and � and � are

� ¼ ðx2
0 þ y2

0Þ
1=2
; ð36Þ

� ¼ z0: ð37Þ

X0 can be related to the crystal parameters by

X0 ¼ Ah: ð38Þ

A is a crystal-orientation matrix defining the standard datum

orientation of the crystal.

For example, if, by convention, a* is chosen as parallel to

the X-ray beam at ’ = 0� and c is chosen as the rotation axis,

then, for the general case,

A ¼

a� b� cos �� c� cos��

0 b� sin �� � c� sin � cos�

0 0 c�

2

4

3

5: ð39Þ

If the crystal is mounted on the goniometer head differently

from this then A can be modified by another matrix, M, say, or

the terms permuted. This exercise becomes clear if the reader

takes an orthogonal case (� = � = � = 90�). For the general

case, see Higashi (1989).

The crystal will most likely be misaligned (slightly or

grossly) from the ideal orientation. To correct for this, the

misorientation matrices Ux, Uy, Uz are introduced, i.e.

Ux ¼

1 0 0

0 cos �’x � sin �’x

0 sin �’x cos �’x

2

4

3

5 ð40Þ

Uy ¼

cos �’y 0 sin �’y

0 1 0

� sin �’y 0 cos �’y

2

4

3

5 ð41Þ

Uz ¼

cos �’z � sin �’z 0

sin �’z cos �’z 0

0 0 1

2

4

3

5; ð42Þ

where �’x, �’y and �’z are angles around the X0, Y0 and Z0

axes, respectively.

Hence, the relationship between X0 and h is

X0 ¼ UzUyUxMAh: ð43Þ

An interesting method of auto-indexing, without and with

knowledge of crystal unit-cell parameters, from a single, small

rotation, monochromatic diffraction pattern is that of Higashi

(1990). This method may have utility with the new X-ray lasers

and a single still diffraction pattern measured from a nano-

crystal.

3.4. Maximum oscillation angle without spot overlap

For a given oscillation photograph, there is a maximum

value of the oscillation range, �’, that avoids overlapping of

spots on a film. The overlap is most likely to occur in the

region of the diffraction pattern perpendicular to the rotation

axis and at the maximum Bragg angle. This is where relp’s pass

through the Ewald sphere with the greatest velocity. For such a

separation between successive relp’s of a*, then the maximum

allowable rotation angle to avoid spatial overlap is given by

�’max ¼
a�

d�max

� �

� �

; ð44Þ

where � is the sample reflecting range (see Section 7). �’max

is a function of ’, even in the case of identical cell parameters.

This is because it is necessary to consider, for a given orien-

tation, the relevant reciprocal-lattice vector perpendicular to

d�max. In the case where the cell dimensions are quite different

in magnitude (excluding the axis parallel to the rotation axis),

then �’max is a marked function of the orientation.

international tables

10 of 22 J. R. Helliwell � Single-crystal X-ray techniques Int. Tables Crystallogr. C (2021).

Figure 8
The rotation method. Definition of coordinate systems. [Cylindrical
coordinates of a relp P (�, �, ’) are defined relative to the axial system
X0Y0Z0 which rotates with the crystal.] The axial system XYZ is defined
such that X is parallel to the incident beam and Z is coincident with the
rotation axis. From Arndt & Wonacott (1977), reproduced with permis-
sion of Elsevier.



In the rotation method several approaches are used. Firstly,

as large an angle as possible is used up to �’max. This reduces

the number of images that need to be processed and the

number of partially stimulated reflections per image but at the

expense of signal-to-noise ratio for individual spots, which

accumulate more background since �<�’max. Secondly, �’

is chosen usually to be less than � so as to optimize the signal-

to-noise ratio of the measurement and to sample the rocking-

width profile. A diffraction image is read after the crystal

rotation has finished. As disk storage has become cheaper and

detector device readout times shorter the use of ‘very fine phi

slicing’ takes this approach of reflection profile measurement

to the ideal limit. Thirdly, a continuous rotation scheme

(‘shutterless data collection’) can be applied using pixel area

detectors where each pixel can be read individually. Such

schemes are also feasible with multiwire proportional chamber

detectors (MWPCs).

The value of �, the crystal rocking width for a given hkl,

depends on the reciprocal-lattice coordinates of the hkl relp

(see Section 7). In the region close to the rotation axis, � is

large.

In the introductory remarks to the monochromatic methods

used, it has already been noted that originally the rotation

method involved 360� rotations contributing to the diffraction

image. Spot overlap led to loss of reflection data and

encouraged Bernal and Weissenberg to devise improvements.

With modern synchrotron techniques, the restriction on �’max

[equation (44)] can be relaxed for special applications. For

example, since the spot overlap that is to be avoided involves

relp’s from adjacent reciprocal-lattice planes, the different

Miller indices hkl and h + l, k, l do lead in fact to a small

difference in Bragg angle. With good enough collimation, a

small spot size exists at the detector plane so that the two spots

can be resolved. For a standard-sized detector, this is practical

for low-resolution data recording. Alternatively, a much larger

detector can be contemplated and even medium-resolution

data can be recorded without major overlap problems. These

techniques could be useful in some time-resolved applications.

For a discussion see Weisgerber & Helliwell (1993) and

Helliwell (2005). For regular data collection, however, narrow

angular ranges are preferred so as to reduce the background

noise in the diffraction images and also to avoid loss of any

data because of spot overlap.

3.5. Blind region

In normal-beam geometry, any relp lying close to the

rotation axis will not be stimulated at all. This situation is

shown in Fig. 9. The blind region has a radius of

�min ¼ d�max sin �max ¼
�2

2d2
min

; ð45Þ

and is therefore strongly dependent on dmin but can be

ameliorated by use of a short �. Shorter � makes the Ewald

sphere have a larger radius, i.e. its surface moves closer to the

rotation axis. At Cu K� for 2 Å resolution, approximately 5%

of the data lie in the blind region according to this simple

geometrical model. However, taking account of the rocking

width �, a slightly greater percentage of the data than this is

not fully sampled except over very large angular ranges. The

actual increase in the blind-region volume due to this effect is

minimized by use of a collimated beam and a narrow spectral

spread (i.e. finely monochromated, synchrotron radiation) if

the crystal is not too mosaic.

These effects are directly related to the Lorentz factor,

L ¼ 1=ðsin2 2� � �2Þ
1=2
: ð46Þ

It is inadvisable to measure a reflection intensity when L is

large because different parts of a spot would need a different

Lorentz factor, which is unrealistic.

The blind region can be filled in by a rotation about another

axis. The total angular range that is needed to sample the blind

region is 2�max in the absence of any symmetry or �max in the

case of mm symmetry (for example). With crystals of high

enough symmetry, i.e not triclinic, and use of a random

orientation, complete sampling of the unique region of reci-

procal space can be obtained from a single rotation axis

setting. However, for precise anomalous scattering measure-

ments careful setting of the crystal orientation is often

preferred (see e.g. Einspahr et al., 1985; Nieh & Helliwell,

1995) and thus rotation about another axis to capture the

blind-region missing data will be required. A reciprocal-

lattice viewer of a processed diffraction data set, so as to

scrutinize gaps in the measurements, is available at https://

staraniso.globalphasing.org/cgi-bin/PDBpeep.cgi (Tickle et al.,

2021).

4. Weissenberg geometry

Weissenberg geometry (Weissenberg, 1924) is dealt with in

the books by Buerger (1942) and Woolfson (1970, 1997), for

example.
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Figure 9
The rotation method. The blind region associated with a single rotation
axis. From Arndt & Wonacott (1977), reproduced with permission of
Elsevier.



4.1. General

The conventional Weissenberg method uses a moving film

in conjunction with the rotation of the crystal and a layer-line

screen. This allows:

(a) A larger rotation range of the crystal to be used (say

200�), avoiding the problem of overlap of reflections (referred

to in Section 3.4 on oscillation photography).

(b) Indexing of reflections on the photograph to be made by

inspection.

The Weissenberg method is not widely used now. In small-

molecule crystallography, quantitative data collection is

usually performed by means of a CCD area-detector

diffractometer.

Weissenberg geometry has been revived as a method for

macromolecular data collection at the Photon Factory

(Sakabe, 1983, 1991), exploiting monochromated synchrotron

radiation and the image plate as detector. Here the method is

used without a layer-line screen where the total rotation angle

is limited to �15�; this is a significant increase over the rota-

tion method with a stationary film. The use of this effectively

avoids the presence of partial reflections and reduces the total

number of exposures required. Provided the Weissenberg

camera has a large radius, the X-ray background accumulated

over a single spot is actually not as serious as one might fear.

This is because the X-ray background decreases approxi-

mately according to the inverse square of the distance from

the crystal to the detector. For very weakly scattering crystals

owing to very small sample size or large unit cell etc. this will of

course become a real limitation. However, the use of such a

camera has not been widely adoped at other synchrotron

facilities.

The following Sections 4.2 and 4.3 describe the standard

situation where a layer-line screen is used.

4.2. Recording of zero layer

Normal-beam geometry (i.e. the X-ray beam perpendicular

to the rotation axis) is used to record zero-layer photographs.

The film is held in a cylindrical cassette coaxial with the

rotation axis. The centre of the gap in a screen is set to coin-

cide with the zero-layer plane. The coordinate of a spot on the

film measured parallel (ZF) and perpendicular (YF) to the

rotation axis is given by

YF ¼
2�

360
D� ð47Þ

ZF ¼ ’=f ; ð48Þ

where ’ is the rotation angle of the crystal from its initial

setting, f is the coupling constant, which is the ratio of the

crystal rotation angle divided by the film cassette translation

distance, in � min� 1, and D is the camera radius. Generally, the

values of f and D are 2� min� 1 and 28.65 mm, respectively.

4.3. Recording of upper layers

Upper-layer photographs are usually recorded in equi-

inclination geometry [i.e. � = � � in equations (21) and (22)].

The X-ray-beam direction is made coincident with the

generator of the cone of the diffracted beam for the layer

concerned, so that the incident and diffracted beams make

equal angles (�) with the equatorial plane, where

� ¼ sin� 1 �n=2: ð49Þ

The screen has to be moved by an amount

s tan�; ð50Þ

where s is the screen radius. If the cassette is held in the same

position as the zero-layer photograph, then reflections

produced by the same orientation of the crystal will be

displaced

D tan� ð51Þ

relative to the zero-layer photograph. This effect can be

eliminated by initial translation of the cassette by D tan�.

5. Precession geometry

The main book dealing with the precession method is that of

Buerger (1964) and is now of largely historical interest. The

advantage of the precession method was that it gave an

undistorted view of the reciprocal lattice because it used a flat

film cassette geometry, but it did not show as many reflections

as the Weissenberg method. Today a ‘virtual precession photo’

of a zero layer is harnessed in validation checks of the

diffraction data. These checks can be readily calculated and

the results readily displayed; such checks show up missing

regions of the measured diffraction data. The mtz processed

diffraction file viewer in the CCP4 program suite (https://

www.ccp4.ac.uk/) has a utility that provides this graphic

visualization functionality.

5.1. General

The precession method with a layer-line screen is used to

record an undistorted representation of a single plane of relp’s

and their associated intensities. In order to achieve this, the

crystal is carefully set so that the plane of relp’s is perpendi-

cular to the X-ray beam. The normal to this plane, the zone

axis, is then precessed about the X-ray-beam axis. A layer-line

screen allows only relp’s of the plane of interest to pass

through to the film. The motion of the crystal, screen and film

are coupled together to maintain the coplanarity of the film,

screen and zone. For X-rays this is now of mainly historical

interest in that the precession camera is rarely used. However

an undistorted view of a single plane of relp’s and their

associated intensities is still valuable and can be readily

created from intensity measurements made with the rotation

method and a diffractometer, as described above. With elec-

trons there has been a renewed interest in the precession

method (without a layer-line screen) since it improves the

measured values of the electron intensity, which are basically

free from dynamical effects (Vincent & Midgley, 1994). This is

being applied to nano- and microcrystals of small molecules

(see e.g. Nicolopoulos et al., 2007) and proteins (see e.g.

Georgieva et al., 2008). This is complemented with rotation
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electron crystallography geometry (see Fig. 2 of Gemmi et al.,

2019). Gemmi et al. (2019) also provide an up-to-date expo-

sition and review of electron crystallography methods,

analyses and results.

5.2. Crystal setting

Setting of the crystal for one zone is carried out in two

stages. First, a monochromatic still identifies the required

zone axis, which is placed parallel to the X-ray beam. This is

done by adjustment to the camera-spindle angle and the

goniometer-head arc in the horizontal plane. This procedure is

usually accurate to a degree or so. Note that the vertical arc

will only rotate the pattern around the X-ray beam. Second, a

screenless precession photograph is taken using an angle of

�7–10� for small molecules or 2–3� for macromolecules. It is

better to use unfiltered radiation, as then the edge of the zero-

layer circle is easily visible. Let the difference of the distances

from the centre of the pattern to the opposite edges of the

trace in the direction of displacement be called � = D� so that

for the horizontal goniometer-head arc and the dial: �arc = xRt

� xLt and �dial = yUp � yDn (Fig. 10). The corrections " to the

arc and camera spindle are given by

� ¼
�

D
¼

sin 4" cos ��

cos2 2" � sin2 ��
in r:l:u:; ð52Þ

where D is the crystal-to-film distance and �� is the precession

angle.

It is possible to measure � to about 0.3 mm (� = 1 mm

corresponds to 140 error for D = 60 mm and �� ’ 7� [Table 2,

based on International Tables for X-ray Crystallography Vol.

II (1959, p. 200)].

5.3. Recording of zero-layer photograph

Before the zero-layer photograph is taken, an Nb filter (for

Mo K�) or an Ni filter (for Cu K�) is introduced into the

X-ray beam path and a screen is placed between the crystal

and the film at a distance from the crystal of

s ¼ rs cot ��; ð53Þ

where rs is the screen radius. Typical values of �� would be 20�

for a small molecule with Mo K� and 12–15� for a protein with

Cu K�. The annulus width in the screen is chosen usually as 2–

3 mm for a small molecule and 1–2 mm for a macromolecule.

A clutch slip allows the camera motor to be disengaged and

the precession motion can be executed under hand control to

check for fouling of the goniometer head, crystal, screen or

film cassette; s and rs need to be selected so as to avoid this

happening. The zero-layer precession photograph produced

has a radius of 2D sin �� corresponding to a resolution limit

dmin ¼ �=2 sin ��. The distance between spots A is related to

the reciprocal-cell parameter a* by the formula

a� ¼
A

D
: ð54Þ

5.4. Recording of upper-layer photographs

The recording of upper-layer photographs involves isolating

the net of relp’s at a distance from the zero layer of �n = n�/b,

where b is the case of the b axis antiparallel to the X-ray beam.

In order to determine �n, it is generally necessary to record a

cone-axis photograph. If the cell parameters are known, then

the camera settings for the upper-level photograph can be

calculated directly without the need for a cone-axis photo-

graph.

In the upper-layer precession photograph, the film is

advanced towards the crystal by a distance

D�n ð55Þ

and the screen is placed at a distance

sn ¼ rs cot ��n ¼ rs cot cos� 1ðcos �� � �nÞ: ð56Þ

The resulting upper-layer photograph has outer radius

Dðsin ��n þ sin ��Þ ð57Þ

and an inner blind region of radius
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Table 2
The distance displacement (in mm) measured on the film versus angular
setting error of the crystal for a screenless precession ( �� ¼ 5�) setting
photograph.

Alternatively, � = �/D ’ sin 4" can be used if " is small [from equation (52)].
Notes: (1) A value of �� of 5� is assumed, although there is a negligible
variation in " with �� between 3� (typical for proteins) and 7� (typical for small

molecules). (2) Crystal-to-film distances on a precession camera are usually
settable at the fixed distance D = 60, 75 and 100 mm. (3) This table should be
used in conjunction with Fig. 10. (4) Values of " are given in intervals of 50 as
this is convenient for various goniometer heads which usually have verniers in
50, 60 or 100 units. The vernier on the spindle of the precession camera is often
in 20 units.

Angular correction,
", in degrees
and minutes � r.l.u

Distance displacement (mm) for
three crystal-to-film distances

60 mm 75 mm 100 mm

0 0 0 0 0
150 0.0175 1.1 1.3 1.8
300 0.035 2.1 2.6 3.5
450 0.0526 3.2 4.0 5.3
600 0.070 4.2 5.3 7.0

1� 150 0.087 5.2 6.5 8.7
1� 300 0.105 6.3 7.9 10.5
1� 450 0.123 7.4 9.2 12.3
2� 0.140 8.4 10.5 14.0

Figure 10
The screenless precession setting photograph (schematic) and associated
mis-setting angles for a typical orientation error when the crystal has been
set previously by a monochromatic still.



Dðsin ��n � sin ��Þ: ð58Þ

5.5. Recording of cone-axis photograph

A cone-axis photograph (or screenless precession diffrac-

tion image) is recorded by using a small precession angle, e.g.

5� for a small molecule or 1� for a protein. The diffraction

image has the appearance of concentric circles centred on the

origin of reciprocal space, provided the crystal is perfectly

aligned. The radius of each circle is

rn ¼ s tan ��n; ð59Þ

where

cos ��n ¼ cos �� � �n: ð60Þ

Hence, �n ¼ cos �� � cos tan� 1ðrn=sÞ.

6. Diffractometry

The main book devoted to single-crystal diffractometry is that

of Arndt & Willis (1966). An extensive description is also

given in Aslanov et al. (1998). Hamilton (1974) gives a detailed

treatment of angle settings for four-circle diffractometers. For

details of area-detector diffractometry, see Howard et al.

(1985), Hamlin (1985) and Dauter & Wilson (2001).

6.1. General

In this section, we describe the following related diffract-

ometer configurations:

(a) multiple axes [!, �, ’ option or !, �, ’ (kappa) option];

(b) fixed � = 45� geometry with area detector.

Configuration (a) is used with single-counter and area

detectors. Configuration (b) is used with area detectors.

The purpose of the diffractometer goniostat is to bring a

selected reflected beam into the detector aperture or a

number of reflected beams onto an area detector of limited

aperture (i.e. an aperture that does not intercept all the

available diffraction spots at one setting of the area detector)

[see Hamlin (1985), p. 431, for example] or for crystal align-

ment for the most precise anomalous scattering measure-

ments. The use of electronic area detectors is now the most

widespread.

The single-counter diffractometer used to be the primary

device for small-molecule crystallography. In macromolecular

crystallography, many relp’s are almost simultaneously in the

diffraction condition. The single-counter diffractometer was

extended to five separate counters [for a review, see Artymiuk

& Phillips (1985)], then subsequently to a multi-element linear

detector [for a review, see Wlodawer (1985)]. Area detectors

offered an even larger aperture for simultaneous acquisition

of reflections [Hamlin et al. (1981), and references therein].

The CCDs or image plates have to a great extent been

succeeded by the pixel area detectors (for an early reference

see Broennimann et al., 2006).

6.2. Multiple axes geometry

With a multiple axes geometry (Fig. 11), a crystal can be

oriented specifically so as to bring the incident and reflected

beams, for a given relp, into the equatorial plane. In this way,

the detector is moved to intercept the reflected beam by a

single rotation movement about a vertical axis (the 2� axis).

The value of � is given by Bragg’s law. In order to bring d* into

the equatorial plane (i.e. the Bragg plane into the meridional

plane), suitable angular settings of a three-axis goniostat are

necessary. The convention for the sign of the angles given in

Fig. 11 is that of Hamilton (1974); his choice of sign of 2� is

adhered to despite the fact that it is left-handed, but in any

case the signs of !, �, ’ are standard right-handed. The specific

reciprocal-lattice point can be rotated from point P to point Q

by the ’ rotation, from Q to R via �, and R to S via ! (see Fig.

12).

In the most commonly used setting, the � plane bisects the

incident and diffracted beams at the measuring position.
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Figure 11
Normal-beam equatorial geometry: the angles !, �, ’, 2� are drawn in the
convention of Hamilton (1974).

Figure 12
Diffractometry with normal-beam equatorial geometry and angular
motions !, � and ’. The relp at P is moved to Q via ’, from Q to R via �,
and R to S via !. From Arndt & Willis (1966). Reproduced with
permission of Cambridge University Press through PLSclear. In this
specific example, the ’ axis is parallel to the ! axis (i.e. � = 0�).



Hence, the vector d* lies in the � plane at the measuring

position. However, since it is possible for reflection to take

place for any orientation of the reflecting plane rotated about

d*, it is feasible therefore that d* can make any arbitrary angle

" with the � plane. It is conventional to refer to the azimuthal

angle  of the reflecting plane as the angle of rotation about

d*. It is possible with a  scan to keep the hkl reflection in the

diffraction condition and so to measure the sample absorption

surface by monitoring the variation in intensity of this

reflection. This  scan is achieved by adjustment of the !, �, ’

angles. When � = �90�, the  scan is simply a ’ scan and "

is 0�.

The � circle is a relatively bulky object whose thickness can

inhibit the measurement of diffracted beams at high �. Also,

collision of the � circle with the collimator or X-ray-tube

housing has to be avoided. An alternative is the kappa

goniostat geometry. In the kappa diffractometer [for a sche-

matic picture, see Wyckoff (1985, p. 334)], the � axis is inclined

at 50� to the ! axis and can be rotated about the ! axis; the �

axis is an alternative to � therefore. The ’ axis is mounted on

the � axis. In this way, an unobstructed view of the sample is

achieved.

6.3. Fixed-� geometry with area detector

The geometry with fixed � consists of an ! axis, a ’ axis and

� fixed. The rotation axis is the ! axis. In this configuration, it

is possible to sample a greater number of independent

reflections per degree of rotation (e.g. see Xuong et al., 1985)

because of the generally random nature of any symmetry axis.

For small-molecule crystallography fixed-� instruments have �

= 54.74�, known as the ‘magic angle’, as it provides a complete

sphere of reciprocal space which can be collected by a set of

three 180� ! scans at three different settings; the Bruker ‘SC-

XRD’ fixed-� goniometer has this geometry. The angle of

54.74� chosen in such an apparatus is the angle between the

body diagonal of a cube and the edges of the cube.

7. Practical realization of diffraction geometry:

sources, optics and detectors

7.1. General

The tools required for making the necessary measurement

of reflection intensities include beam-conditioning items,

crystal goniostat and detectors.

In this section, we describe the common configurations for

defining precise states of the X-ray beam. The topic of

detectors is dealt with in Part 7 of the previous edition of

International Tables for Crystallography, Vol. C (2006) (see

especially Section 7.1.6). The impact of detector distortions on

diffraction geometry is dealt with below in Section 7.4 of this

present chapter.

Within the topic of beam conditioning the following

subtopics are dealt with: (a) collimation, (b) monochromators

and (c) mirrors.

An exhaustive survey is not given, since a wide range of

configurations are feasible. Instead, the commonest arrange-

ments are covered. In addition, conventional X-ray sources

are separated from synchrotron X-ray sources. The important

difference in the treatment of the two types of source is that on

the synchrotron the position and angle of the photon emission

from the relativistic charged particles are correlated. One

result of this, for example, is that after monochromatization of

the synchrotron radiation (SR) the wavelength and angular

direction of a photon are correlated. With X-ray undulators

the divergence angles, in both the horizontal and vertical

directions, are very small e.g. ~20 mrad.

The angular reflecting range and diffraction-spot size are

determined by the physical state of the beam and the sample.

Hence, the idealized situation considered earlier of a point

sample and zero-divergence beam will be relaxed. Moreover,

the effects of the detector-imaging characteristics are consid-

ered, i.e. obliquity, parallax, point-spread factor and spatial

distortions.

7.2. Conventional X-ray sources: spectral character, crystal

rocking curve and spot size

An extended discussion of instrumentation relating to

conventional X-ray sources is given in Arndt & Willis (1966)

and Arndt & Wonacott (1977). Witz (1969) has reviewed the

use of monochromators for conventional X-ray sources. See

also Aslanov et al. (1998).

It is generally the case that the K� line has been used for

single-crystal data collection via monochromatic methods. The

continuum Bremsstrahlung radiation has been used for Laue

photography usually at the stage of setting crystals but also

used extensively for structure analysis from 1913 through to

the 1920s and 1930s very notably by W. L. Bragg, R. G.

Dickinson, S. Nishikawa, L. Pauling and R. W. G. Wyckoff (for

a history of this period see Cruickshank, 1992).

The emission lines of interest consist of the K�1, K�2

doublet and the K� line. The intrinsic spectral width of the

K�1 or K�2 line is�10� 4, their separation (��/�) is 2.5 � 10� 3,

and they are of different relative intensity. The K� line is

eliminated either by use of a suitable metal filter or by a

monochromator. A mosaic monochromator such as graphite

passes the K�1, K�2 doublet in its entirety. The mono-

chromator passes a certain, if small, component of a harmonic

of the K�1, K�2 line extracted from the Bremsstrahlung. This

latter effect only becomes important in circumstances where

the attenuated main beam is used for calibration; the process

of attenuation enhances the short-wavelength harmonic

component to a significant degree. In diffraction experiments,

this component is of negligible intensity. The polarization

correction is different with and without a monochromator [see

the previous edition of International Tables for Crystal-

lography, Vol. C (2006), Chapter 6.2].

The effect of the doublet components of the K� emission is

to cause a peak broadening at high angles. From Bragg’s law,

the following relationship holds for a given reflection:

�� ¼
��

�
tan �: ð61Þ
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For proteins where � is relatively small, the effect of the K�1,

K�2 separation is generally not significant. For small mole-

cules, which diffract to higher resolution, this is a significant

effect and has to be accounted for at high angles.

The width of the rocking curve of a crystal reflection is given

by (Arndt & Willis, 1966)

� ¼
aþ f

s

� �

þ �þ
��

�
tan �

� �

ð62Þ

when the crystal is fully bathed by the X-ray beam, where a is

the crystal size, f the X-ray tube focus size (foreshortened), s

the distance between the X-ray tube focus and the crystal, and

� the crystal mosaic spread (Fig. 13).

In the moving-crystal method, � is the minimum angle

through which the crystal must be rotated, for a given reflec-

tion, so that every mosaic block can diffract radiation covering

a fixed wavelength band �� from every point on the focal spot.

This angle � can be controlled to some extent, for the

protein case, by collimation. For example, with a collimator

entrance slit placed as close to the X-ray tube as possible and a

collimator exit slit placed as close to the sample as possible,

the value of (a + f)/s can approximately be replaced by (a0 +

f 0)/s0, where f 0 is the entrance-slit size, a0 is the exit-slit size,

and s0 the distance between them. Clearly, for a0 < a, the whole

crystal is no longer bathed by the X-ray beam. In fact, by

simply inserting horizontal and vertical adjustable screws at

the front and back of the collimator, adjustment to the hori-

zontal and vertical divergence angles can be made. The spot

size at the detector can be calculated approximately by

multiplying the particular reflection rocking angle � by the

distance from the sample to the spot on the detector. In the

case of a single-counter diffractometer, tails on a diffraction

spot can be eliminated by use of a detector collimator.

Spot-to-spot spatial resolution can be enhanced by use of

focusing mirrors, which is especially important for large-

protein and virus crystallography, where long cell axes occur.

The effect is achieved by focusing the beam on the detector,

thereby changing a divergence from the source into a

convergence to the detector.

In the absence of absorption, at grazing angles, X-rays up to

a certain critical energy are reflected. The critical angle �c is

given by

�c ¼
e2

mc2

N

�

� �1=2

�; ð63Þ

where N is the number of free electrons per unit volume of the

reflecting material. The higher the atomic number of a given

material then the larger is �c for a given critical wavelength.

The product of mirror aperture with reflectivity gives a figure

of merit for the mirror as an efficient optical element.

The use of a pair of perpendicular curved mirrors set in the

horizontal and vertical planes can focus the X-ray tube source

to a small spot at the detector. The angle of the mirror to

the incident beam is set to reject the K� line (and shorter-

wavelength Bremsstrahlung). Hence, spectral purity at the

sample and diffraction spot size at the detector are improved

simultaneously. There is some loss of intensity (and length-

ening of exposure time) but the overall signal-to-noise ratio is

improved. Another reason for doing this, however, is to

enhance spot-to-spot spatial resolution. The rocking width of

the sample is not affected in the case of 1:1 focusing (object

distance = image distance).

To summarize, the configurations are

(a) beam collimator only;

(b) filter + beam collimator;

(c) filter + beam collimator + detector collimator (single-

counter case);

(d) graphite monochromator + beam collimator;

(e) pair of focusing mirrors + exit-slit assembly;

(f) focusing germanium monochromator + perpendicular

focusing mirror + exit-slit assembly.
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Figure 13
Reflection rocking width for a conventional X-ray source. From Arndt &
Wonacott (1977, p. 7), reproduced with permission of Elsevier. (a) Effect
of sample mosaic spread. The relp is replaced by a spherical cap with a
centre at the origin of reciprocal space where it subtends an angle �. (b)
Effect of (��/�)conv, the conventional source type spectral spread. (c)
Effect of a beam divergence angle, �. The overall reflection rocking width
is a combination of these effects.



Configuration (a) is for Laue mode; (b)–(f) are for mono-

chromatic mode; (f) can also be applied to conventional-

source work.

7.3. Synchrotron X-ray sources

In the utilization of synchrotron X-radiation (SR), both

Laue and monochromatic modes are important for data

collection. The unique geometric and spectral properties of

SR renders the treatment of diffraction geometry different

from that for a conventional X-ray source. The properties of

SR are dealt with in the previous edition of International

Tables for Crystallography, Vol. C (2006), Section 4.2.1.5 and

elsewhere; see also the Subject Index of that edition. Reviews

of instrumentation, methods and applications of synchrotron

radiation in protein crystallography are given by Helliwell

(1984, 1992).

(a) Laue geometry: sources, optics, sample reflection band-

width and spot size. Laue geometry involves the use of the

polychromatic SR spectrum as transmitted through the

beryllium window that is often used to separate the apparatus

from the machine vacuum. There is useful intensity down to a

wavelength minimum of ��c/5, where �c is the critical wave-

length of the magnet source. The maximum wavelength is

typically � 3 Å; however, if the crystal is mounted in a

capillary then the glass absorbs the wavelengths beyond

�2.6 Å.

The bandwidth can be limited by optical elements. A

reflecting mirror at grazing incidence can be used for two

reasons. First, the minimum wavelength in the beam can be

sharply defined to aid the accurate definition of the Laue-spot

multiplicity. Second, the mirror can be used to focus the beam

at the sample. The maximum-wavelength limit can be trun-

cated by use of aluminium absorbers of varying thickness or

by use of a transmission mirror (Lairson & Bilderback, 1982;

Cassetta et al., 1993). The case of undulator or wiggler–

undulator (‘wundulator’) Laue is described below.

The measured intensity of individual Laue diffraction spots

depends on the wavelength at which they are stimulated. The

problem of wavelength normalization is treated by a variety of

methods. These include:

(a) use of a monochromatic reference data set;

(b) use of symmetry equivalents and/or reflections recorded

more than once in the Laue data set and measured at different

wavelengths;

(c) calibration with a standard sample such as a silicon

crystal.

Each of these methods produces a ‘�-curve’ describing the

relative strength of spots measured at various wavelengths.

The methods rely on the incident spectrum being smooth and

stable with time. There are discontinuities in the ‘�-curve’ at

the bromine and silver K-absorption edges owing to the silver

bromide in the photographic emulsion case. The �-curve is

then split up into wavelength regions, i.e. �min to 0.49 Å,

0.49 to 0.92 Å, and 0.92 Å to �max. Other detector types

have different discontinuities, depending on the material

making up the X-ray absorbing medium. [The quantification

of conventional-source Laue-diffraction data (Rabinovich &

Lourie, 1987; Brooks & Moffat, 1991) requires the elimination

of spots recorded near the emission-line wavelengths.]

The production and use of narrow-bandpass beams has

increased in interest, e.g. ��/�� 0.2 so as to maximize intensity

signal to noise. An X-ray undulator of 10–100 periods ideally

should yield a bandwidth behind a pinhole of ��/� ’ 0.1–0.01.

By using a slightly stronger magnetic field a hybrid device

wiggler–undulator (‘wundulator’) can be used to produce

broader ‘narrow-bandpass’. In these cases, wavelength

normalization is more difficult because the actual spectrum

over which a reflection is integrated is more rapidly varying in

intensity, but modern Laue software caters for that (see Ren et

al., 1999; Arzt et al., 1999; and Šrajer et al., 2000). The spot

bandwidth is determined by the mosaic spread and horizontal

beam divergence (since �H > �V) as

��

�

� �

¼ ð�þ �HÞ cot �; ð64Þ

where � = sample mosaic spread, assumed to be isotropic, �H =

horizontal cross-fire angle, which in the absence of focusing is

(xH + �H)/P, where xH is the horizontal sample size and �H the

horizontal source size, and P is the sample to the tangent-point

distance; and similarly for �V in the vertical direction.

Generally, at SR sources, �H is greater than �V. When a

focusing-mirror element is used, �H and/or �Vare convergence

angles determined by the focusing distances and the mirror

aperture.

The size and shape of the diffraction spots vary across the

detector plane. The radial spot length is given by convolution

of Gaussians as

ðL2
R þ L2

c sec2 2�Þ
1=2

ð65Þ

and tangentially by

ðL2
T þ L2

cÞ
1=2
; ð66Þ

where Lc is the size of the X-ray beam (assumed circular for

simplicity) at the sample, and

LR ¼ D sinð2�þ �RÞ sec2 2� ð67Þ

LT ¼ Dð2�þ �TÞ sin � sec 2�; ð68Þ

and

�R ¼ �V cos þ �H sin ð69Þ

�T ¼ �V sin þ �H cos ; ð70Þ

where  is the angle between the vertical direction and the

radius vector to the spot (see Andrews et al., 1987). For a

crystal that is not too mosaic, the spot size is dominated by Lc.

For a mosaic or radiation-damaged crystal, the main effect is a

radial streaking arising from �, the sample mosaic spread.

(b) Monochromatic SR beams: optical configurations and

sample rocking width. A wide variety of perfect-crystal

monochromator configurations are possible and have been

reviewed by various authors (Hart, 1971; Bonse et al., 1976;

Hastings, 1977; Kohra et al., 1978). Since the reflectivity of
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perfect silicon and germanium is effectively 100%, multiple-

reflection monochromators are feasible and permit the

tailoring of the shape of the monochromator resolution

function, harmonic rejection, and manipulation of the polar-

ization state of the beam. Two basic designs are in common

use. These are (a) the bent single-crystal monochromator of

triangular shape (Lemonnier et al., 1978) and (b) the double-

crystal monochromator, either linked in a ‘channel cut’ device

or as separate crystals.

In the case of the single-crystal monochromator, the actual

curvature employed is very important in the diffraction

geometry. For a point source and a flat monochromator

crystal, there is a gradual change in the photon wavelength

selected from the white beam as the length of the mono-

chromator is traversed [Fig. 14(a)]. For a point source and a

curved monochromator crystal, one specific curvature can

compensate for this variation in incidence angle [Fig. 14(b)].

The reflected spectral bandwidth is then at a minimum; this

setting is known as the ‘Guinier position’. If the curvature of

the monochromator crystal is increased further, a range of

photon wavelengths, (��/�)corr, is selected along its length so

that the rays converging towards the focus have a correlation

of photon wavelength and direction [Fig. 14(c)]. This is used in

dispersive measurements, e.g. see Arndt et al. (1982) and

Renevier et al. (2003). The effect of a finite source is to cause a

change in incidence angle at the monochromator crystal, so

that at the focus there is a photon-wavelength gradient across

the width of the focus (for all curvatures) [Fig. 14(d)]. The use

of a slit in the focal plane is akin to placing a slit at the tangent

point to limit the source size.

The double-crystal monochromator with two parallel or

nearly parallel perfect crystals of germanium or silicon is a

common configuration. The advantage of this is that the

outgoing monochromatic beam is parallel to the incoming

beam, although it is slightly displaced vertically by an amount

2d cos �, where d is the perpendicular distance between the

crystals and � the monochromator Bragg angle. The mono-

chromator can be rapidly tuned, since the diffractometer or

camera need not be re-aligned significantly in a scan across an

absorption edge. Between absorption edges, some vertical

adjustment of the diffractometer is required. Since the rocking

width of the fundamental is broader than the harmonic

reflections, the strict parallelism of the pair of crystal planes

can be relaxed, i.e. detuned so that the harmonic can be

rejected with little loss of the fundamental intensity. The

spectral spread in the reflected monochromatic beam is

determined by the source divergence accepted by the mono-

chromator, the angular size of the source and the mono-

chromator rocking width (see Fig. 15).

The double-crystal monochromator is often used with a

toroid focusing mirror; the functions of monochromatization

are then separated from the focusing (Hastings et al., 1978).

The rocking width of a reflection depends on the horizontal

and vertical beam divergences/convergences (after due

account for collimation is taken) �H and �V, the spectral

spreads (��/�)conv and (��/�)corr, and the mosaic spread �. We

assume that � � !, where ! is the angular broadening of a

relp due to a finite sample. In the case of synchrotron radia-

tion, �H and �V are usually widely asymmetric. On a

conventional source, usually �H ’ �V.

Two types of spectral spread occur with synchrotron and

neutron sources (Greenhough & Helliwell, 1982; Schoenborn,

1983). The term (��/�)conv is the spread that is passed down

each incident ray in a divergent or convergent incident beam;

the subscript refers to conventional source type. This is

because it is similar to the K�1, K�2 line widths and separa-
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Figure 14
Single-crystal monochromator illuminated by synchrotron radiation: (a)
flat crystal, (b) Guinier setting, (c) overbent crystal, (d) effect of source
size (shown at the Guinier setting for clarity). From Helliwell (1984).
Copyright IOP Publishing. Reproduced with permission. All rights
reserved.

Figure 15
Double-crystal monochromator illuminated by synchrotron radiation.
The contributions of the source divergence �V and angular source size
��source to the range of energies reflected by the monochromator are
shown.



tion. At the synchrotron, this component also exists and arises

from the monochromator rocking width and finite-source-size

effects. The term (��/�)corr is special to the synchrotron or

neutron case. The subscript ‘corr’ refers to the fact that the ray

direction can be correlated with the photon or neutron

wavelength. Usually, an instrument is set to have (��/�)corr = 0.

In the most general case, for a (��/�)corr arising from the

horizontal ray direction correlation with photon energy, and

the case of a horizontal rotation axis, then the rocking width

’R of an individual reflection is given by

’R ¼ L2 ��

�

� �

corr

d�2 þ ��H

� �2

þ �2
V

( )1=2

þ2"sL; ð71Þ

where

"s ¼
d� cos �

2
�þ

��

�

� �

conv

tan �

� �

ð72Þ

and L is the Lorentz factor 1=ðsin2 2� � �2Þ1=2.

The Guinier setting of the instrument gives (��/�)corr = 0.

The equation for ’R then reduces to

’R ¼ L½ð�2�2
H þ �

2
V=L2Þ

1=2
þ 2"s� ð73Þ

(from Greenhough & Helliwell, 1982). For example, for � = 0,

�V = 0.2 mrad (0.01�), � = 15�, (��/�)conv = 1 � 10� 3 and � =

0.8 mrad (0.05�), then ’R = 0.08�. But ’R increases as �

increases [see Greenhough & Helliwell (1982, Table 5)].

In the rotation/oscillation method as applied to protein and

virus crystals, a small angular range is used per exposure

(Section 3.4). For example, �’max may be 1.5� for a protein,

and 0.4� or so for a virus. Many reflections will be only

partially stimulated over the exposure. It is important, espe-

cially in the virus case, to predict the degree of penetration of

the relp through the Ewald sphere. This is done by analysing

the interaction of a spherical volume for a given relp with the

Ewald sphere. The radius of this volume is given by

E ’
’R

2L
ð74Þ

(Greenhough & Helliwell, 1982). For discussions, see Harrison

et al. (1985) and Rossmann (1985).

In Fig. 16, the relevant parameters are shown. The diagram

shows (��/�)corr = 2� in a plane, usually horizontal, with a

perpendicular (vertical) rotation axis, whereas the formula for

’R above is for a horizontal axis. This is purely for didactic

reasons since the interrelationship of the components is then

much clearer. For full details, see Greenhough & Helliwell

(1982).

(c) The use of the X-ray laser to record ‘still’ diffraction

images from micro- and nano-sized crystal samples. Accurate

modelling of the diffraction underpins the huge success of

protein crystallography, using sophisticated models developed

over many years. The properties of a synchrotron X-ray source

monochromated beam were studied in great detail through

numerous commissioning experiments with test samples

(Helliwell et al., 1982). A similar strategy was undertaken for

the characterization of a ‘white’ X-ray beam with and without

beam-conditioning elements (reflecting mirrors and filters).

However, the X-ray laser as a new source poses new chal-

lenges for detailed characterization owing to its stochastic

nature. The ultra-intense nature of the X-ray beam, whilst

being formed of ultra-short time pulses, allows ‘only’ a single

diffraction pattern to be collected as there is no time to rotate

the crystal sample. Finally, the smallest crystal samples now

studied (in the nanometre size range) for structures with quite

large unit cells leads to relatively few unit cells being irra-

diated and thereby the ‘grating interference function’ is

broadened. The use of many individual single-crystal X-ray

diffraction patterns representing many orientations can make

a merged single X-ray diffraction data set of good data

completeness. In many studies of this kind a Monte Carlo

approach to merging the still diffraction patterns (‘stills’) was

used; typically many hundreds of thousands of these stills

made up one data set. Attempts to refine the partiality of each

measured diffraction spot have gradually been made, to good

effect in terms of greatly reducing the number of nanocrystals

used. For a description of the progress the reader is referred to

the overview of Sauter (2015).

Whilst this section has focused on micrometre- and nano-

metre-sized crystals studied one by one by serial crystal-

lography, a method initiated at XFELs, the use of a large

single crystal is also possible. This allows many X-ray

diffraction shots across the crystal, which is displaced and

rotated between the XFEL shots, to be measured (Ago, 2014).
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Figure 16
The rocking width of an individual reflection for the case of Fig. 14(c) and
a vertical rotation axis. ’R is determined by the passage of a spherical
volume of radius "s (determined by sample mosaicity and a conventional-
source-type spectral spread) through a nest of Ewald spheres of radii
set by � = 1

2
[��/�]corr and the horizontal convergence angle �H. From

Greenhough & Helliwell (1982).



7.4. Geometric effects and distortions associated with area

detectors

Electronic area detectors are real-time image-digitizing

devices under computer control. The mechanism by which an

X-ray photon is captured is different in the various devices

available (i.e. gas chambers, television detectors, charge-

coupled devices, pixel detectors) and is different specifically

from film or image plates. Arndt (1986) has reviewed the

various devices available, their properties and performances

[see also Sections 7.1.6 and 7.1.8 of the previous edition

of International Tables for Crystallography, Vol. C (2006);

Section 7.1.8 deals with storage phosphors, image plates

and pixel detectors]. Fourme (1997) provides an update on

position-sensitive gas detectors.

(a) Obliquity. In terms of the geometric reproduction of a

diffraction-spot position, size and shape, photographic film

gives a virtually true image of the actual diffraction spot. This

is because the emulsion is very thin and, even in the case

of double-emulsion film, the thickness, g, is only �0.2 mm.

Hence, even for a diffracted ray inclined at 2� = 45� to the

normal to the film plane, the ‘parallax effect’, g tan 2�, is very

small (see below for details of when this is serious). With film,

the spot size is increased owing to oblique or non-normal

incidence. The obliquity effect causes a beam, of width w, to be

recorded as a spot of width

w0 ¼ w sec 2�: ð75Þ

For example, if w = 0.5 mm and 2� = 45�, then w0 is 0.7 mm.

With an electronic area detector, obliquity effects are also

present. In addition, the effects of parallax, point-spread

factor and spatial distortions have to be considered.

(b) Parallax. In the case of a one-atmosphere xenon-gas

chamber of thickness g = 10 mm, the g tan 2� parallax effect is

dramatic [see Hamlin (1985, p. 435)]. The wavelength of the

beam has to be considered. If a � of �1 Å is used with such a

chamber, the photons have a significant probability of fully

traversing such a gap and parallax will be at its worst; the spot

is elongated and the spot centre will be different from that

predicted from the geometric centre of the diffracted beam. If

a � of 1.54 Å is used then the penetration depth is reduced and

an effective g, i.e. geff, of �3 mm would be appropriate. The

use of higher pressure in a chamber increases the photon-

capture probability, thus reducing geff pro rata; at four atmo-

spheres and � = 1.54 Å, parallax is very small.

In general, we can take account of obliquity and parallax

effects whereby the measured spot width, in the radial direc-

tion, is w00, where

w00 ¼ w sec 2� þ geff tan 2�: ð76Þ

As well as changing the spot size, the spot position, i.e. its

centre, is also changed by both obliquity and parallax effects

by 1
2
ðw00 � wÞ. The spherical drift-chamber design eliminated

the effects of parallax (Charpak et al., 1977). In the case of a

phosphor-based television system, the X-rays are converted

into visible light in a thin phosphor layer so that parallax is

negligible.

(c) Point-spread factor. Even at normal incidence, there will

be some spreading of the beam size. This is referred to as the

point-spread factor, i.e. a single pencil ray of light results in a

finite-sized spot. In the TV-detector, CCD-with-phosphor and

image-plate cases, the graininess of the phosphor and the

system imaging the visible light contribute to the point-spread

factor. In the case of a CCD used in direct-detection mode, i.e.

X-rays impinging directly on the silicon chip, the point-spread

factor is negligible for a spot of typical size.

(d) Spatial distortions. The spot position is affected by

spatial distortions. These non-linear distortions of the

predicted diffraction spot positions have to be calibrated for

independently; in the worst situations, misindexing would

occur if no account were taken of these effects. Calibration

involves placing a geometric plate, containing a perfect array

of holes, over the detector. The plate is illuminated, for

example, with radiation from a radioactive source or scattered

from an amorphous material at the sample position. The

measured positions of each of the resulting ‘spots’ in detector

space (units of pixels) can be related directly to the expected

position (in mm). A 2D, non-linear, pixel-to-mm and mm-to-

pixel correction curve or look-up table is thus established.

These are the special geometric effects associated with

detectors. We have not discussed non-uniformity of response

of detectors since this does not affect the geometry. Calibra-

tion for non-uniformity of response is discussed in Section

7.1.6 of the previous edition of International Tables for Crys-

tallography, Vol. C (2006).

8. FAIR data and core metadata

In the FAIR raw data era (where raw data are described as, or

not, Findable, Accessible, Interoperable and Reusable), the

opportunity exists to archive the raw diffraction data as digital

storage has expanded enormously. In the reprocessability of

the raw data the geometric position of the beam centre must

be part of the recorded metadata. Full details, and other core

metadata relevant to this chapter, are given in the IUCr’s

Diffraction Data Deposition Working Group Final Report

2017 (https://www.iucr.org/resources/data/dddwg/final-report).
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