International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D, ch. 1.7, pp. 214-216

Section 1.7.5. The main nonlinear crystals

B. Boulangera* and J. Zyssb

aLaboratoire de Spectrométrie Physique, Université Joseph Fourier, 140 avenue de la Physique, BP 87, 38 402 Saint-Martin-d'Hères, France, and bLaboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
Correspondence e-mail:  benoitb@satie-bourgogne.fr

1.7.5. The main nonlinear crystals

| top | pdf |

Tables 1.7.5.1[link] and 1.7.5.2[link] give some characteristics of the main nonlinear crystals. No single nonlinear crystal is the best for all applications, so the different materials must be seen as complementary to each other.

Table 1.7.5.1| top | pdf |
Mineral nonlinear crystals

The letters (a, b, c) refer to the crystallographic frame. These data are mainly extracted from Bordui & Fejer (1993[link]).

(a) SHG (1.064–0.532 µm).

 KD2PO4 (KD*P)NH4H2PO4 (ADP)CsD2AsO4 (CD*A)β-BaB2O4 (BBO)LiB3O5 (LBO)
Crystal class [\bar 4 2 m] [\bar 4 2 m] [\bar 4 2 m] [3m] [mm2]
Transparency (µm) 0.18–1.8 0.184–1.5 0.27–1.66 0.198–2.6 0.16–2.3
Non-critical λpump at room temperature (µm)          
 Type I 0.519 0.524 1.045 0.409 0.554 (c)
          1.212 (a)
 Type II 1.19 (b)
           
Tpm (K)     385   421
Type of phase matching II II I I I (a)
[\theta] (°) 54 62 90 23 90
[\varphi] (°) 0
Effective coefficient deff (pm V−1) 0.35 0.39 0.30 1.9 0.85
Angular bandwidth (mrad cm) 2.3 2.2 51 0.53 72
Walk-off angles          
 ρω (°) 1.3 1.2 0 0 0
 ρ (°) 1.4 1.5 0 3.2 0
Thermal bandwidth (K cm) 12 2.1 3.3 51 3.9
Spectral bandwidth (nm cm) 5.6 26 2.5 2 3.6
Surface optical damage threshold (GW cm−2) 5 (1 ns) 6 (15 ns) 0.25 (12 ns) 13.5 (1 ns) 25 (0.1 ns)
>8 (0.6 ns at 0.53 µm) >8 (0.6 ns at 0.53 µm)   23 (14 ns) 1.4 (12 ns at 0.78 µm)
      32 (8 ns at 0.53 µm)  

SHG (1.064–0.532 µm) (cont.).

 KTiOPO4 (KTP)KNbO35% MgO:LiNbO3LiIO3
Crystal class [mm2] [mm2] [3m] [6mm]
Transparency (µm) 0.35–4.5 0.4–5.5 0.35–5 0.31–5 [||] to c, 0.34–4 [\perp] to c
Non-critical λpump at room temperature (µm)        
 Type I 0.860 (a)   0.756
    0.982 (b)    
 Type II 0.990 (b)  
  1.081 (a)      
Tpm (K)   456 380  
Type of phase matching II (a, b) I (b) I I
[\theta] (°) 90 90 90 30
[\varphi] (°) 23 90
Effective coefficient deff (pm V−1) 2.4 −13 4.7 1.8
Angular bandwidth (mrad cm) 9 13 33 0.34
Walk-off angles        
 ρω (°) 0.20 0 0 0
 ρ (°) 0.27 0 0 4.3
Thermal bandwidth (K cm) 17 0.3 0.75 23
Spectral bandwidth (nm cm) 0.46 0.12 0.31 0.82
Surface optical damage threshold (GW cm−2) 9–20 (1 ns) 7 (1 ns)   2 (1 ns)
>2 (10 ns at 0.5 µm) >1 (10 ns)   1 (0.1 ns at 0.53 µm)

(b) SHG (532–266 nm).

 KD2PO4 (KD*P)NH4H2PO4 (ADP)β-BaB2O4 (BBO)
Crystal class [\bar 4 2 m] [\bar 4 2 m] [\bar 4 2 m]
Transparency (µm) 0.18–1.8 0.184–1.5 0.198–2.6
Non-critical λpump at room temperature (µm) 0.519 0.524 0.409
Tpm (K) 308 324  
Type of phase matching I I I
[\theta] (°) 90 90 47
[\varphi] (°)
Effective coefficient deff (pm V−1) 0.44 0.57 2.0
Angular bandwidth (mrad cm) 16 16 0.16
Walk-off angles      
 ρω (°) 0 0 0
 ρ (°) 0 0 4.8
Thermal bandwidth (K cm) 3.0 0.54 4.0
Spectral bandwidth (nm cm) 0.13 0.13 0.073
Surface optical damage threshold (GW cm−2) 5 (1 ns) 6 (15 ns) 13.5 (1 ns)
>8 (0.6 ns at 0.53 µm) >8 (0.6 ns at 0.53 µm) 23 (14 ns)
    32 (8 ns at 0.53 µm)

(c) SHG (4000–2000 nm).

 AgGaS2AgGaSe2ZnGeP2Tl3AsSe3 (TAS)
Crystal class [\bar 4 2 m] [\bar 4 2 m] [\bar 4 2 m] [3m]
Transparency (µm) 0.5–13 0.78–18 0.74–12 1.3–17
Non-critical λpump at room temperature (µm) 1.8 and 11.2 3.1 3.2
    12.8 10.3  
Type of phase matching I I I I
[\theta] (°) 31 52 56 33
[\varphi] (°)
Effective coefficient deff (pm V−1) 10.4 28 70 68
Angular bandwidth (mrad cm) 3.7 6.0 5.0 4.2
Walk-off angles        
 ρω (°) 0 0 0.65 0
 ρ (°) 1.2 0.64 0 3.1
Thermal bandwidth (K cm) 50 50 40 5.7 (SHG at 10.6 µm)
Spectral bandwidth (nm cm) 11 22 20
Surface optical damage threshold (GW cm−2) 0.5 (10 ns bulk) 0.01–0.04 (50 ns, 2 µm) 0.05 (25 ns at 2 µm) 0.016 (250 ns at 10.6 µm)
  0.02–0.03 (10 ns at 10.6 µm) 1 (2 ns at 10.6 µm)  

Table 1.7.5.2| top | pdf |
Organic and organo-mineral crystals

Abbreviations for crystals: 5-NU: 5-nitrouracil; MAP: methyl-(2,4-dinitrophenyl)-aminopropanoate; MNA: 2-methyl-4-nitroaniline; POM: 3-methyl-4-nitropyridine-N-oxide; NPP: N-(4-nitrophenyl)-L-propinol; 2A5NPDP: 2-amino-5-nitropyridine dihydrogen phosphate. OPA, OPO and SROPO are abbreviations for optical parametric amplification, oscillation and single resonant optical parametric oscillator, respectively. 1 e.s.u. = 4.19 × 10−4 m V−1.

CrystalSpace groupTransparencyRefractive index phase matching (PM)Damage threshold
Urea [P\bar 4 2_1 m] 220 nm to 2 µm 90° type-II PM at 597 nm 1.4 GW cm−2 at 354.7 nm
      PM to 238 nm  
5-NU P212121 410 nm to 2 µm [n_b>n_c>n_a]  
      Types I and II for SHG and SFG ([\omega +2\omega\rightarrow 3\omega])  
MAP P21 500 nm to 2 µm [n_x\,\lt\,n_y\,\lt\,n_z] >3 GW cm−2 at 1.06 µm, 10 ns, 10 Hz
      Non-critical PM: at 1.083 µm (along z); at 1.06 µm (between room temperature and liquid N2) >150 MW cm−2 at 532 nm, 7 ns, 10 Hz
MNA Cc 500 nm to 2 µm nx = 2.093 and ny = 2.494 at 1.06 µm  
POM P212121 500 nm to 2 µm [n_b>n_a>n_c] [\sim]1 TW cm−2 at 610 nm (10 Hz, 100 fs)
      Type-I PM tunable from 2 µm to 0.8 µm 2 GW cm−2 at 1.06 µm (20 ps)
        150 MW cm−2 at 0.532 µm (20 ps)
        50 MW cm−2 at 0.532 µm (10 ns)
NPP P21 500 nm to 2 µm [n_y>n_x>n_z] 10 GW cm−2 at 620 nm (100 fs, 10 Hz)
      [n_x-n_z] = 0.78 at 532 nm  
      Non-critical PM at 1.15 µm  
      [{\rm d}\theta_{\rm PM}/{\rm d}T] = −0.303 mrad K−1  
2A5NPDP Pna21 0.420 to 1.7 µm [n_x\,\lt\,n_y\,\lt\,n_z]  
      [n_z-n_x] = 0.158 at 546 nm  
      [n_z-n_y] = 0.152 at 546 nm  
      Type-II non-critical PM at 1.06 µm at 210 K  
      Type-I (deff = 2.25 pm V−1) PM at 1.34 µm  
      Type-II (deff = 4.5 pm V−1) PM at 1.34 µm  
      [{\rm d}\theta_{\rm PM}/{\rm d}T] = −0.137 mrad K−1 for type II at 1.34 µm  
      [{\rm d}\lambda/{\rm d}T] = 0.176 nm K−1 for PM (295 < T < 343 K)  
DAST [Cc] 700 nm to 2 µm n1(720 nm) = 2.519  
      n2(720 nm) = 1.720  
      n3(720 nm) = 1.635  
2A5NPCl [P2_1] 410 nm to 1.65 µm See Horiuchi et al. (2002[link])  

CrystalNonlinear coefficients SHG (dij) and EO (rij)OPO/OPAReferences
Urea d14 = 1.4 pm V−1 SRO λp = 354.7 nm tp = 7 ns (a), (b), (c), (d)
  r41 = 56 × 10−9 e.s.u. Yield: 20.5%  
  r63 = 25 × 10−9 e.s.u. Threshold: 45 mW  
    Output: 6 mW at 1.22 µm  
    Tunability: 0.499 to 1.23 µm  
5-NU d14 = d25 = d36 = 8.7 pm V−1 at 1.06 µm   (e)
MAP d21 = 40 ± 5 × 10−9 e.s.u.   (f)
  d22 = 44 ± 5 × 10−9 e.s.u.    
  d23 = 8.8 ± 2 × 10−9 e.s.u.    
  d25 = −1.3 ± 2 × 10−9 e.s.u.    
MNA d11 = 250 pm V−1 at 1.06 µm   (g), (h), (i)
  d11 = 190 pm V−1 at 1.2 µm    
  d11 = 165 pm V−1 at 1.3 µm    
  d11 = 145 pm V−1 at 1.47 µm    
  d11 = 125 pm V−1 at 1.54 µm    
  ([d_{11}^2/n^3])MNA = 2000([d_{11}^2/n^3])LiNbO3    
  r11 = 67 ± 25 pm V−1 at 632.8 nm    
  [{\textstyle{1 \over 2}}(n_1^3r_{11}-n_3^3r_{31})] = 270 ± 50 pm V−1    
POM d14 = d25 = d36 = 23 ± 3 pm V−1 at 1.06 µm OPA: G = 103 (j), (k), (l), (m), (n)
  r41 = 3.6 ± 0.6 pm V−1 at 632.8 nm λp = 532 nm, 10 Hz, 25 ps  
  r52 = 5.1 ± 0.4 pm V−1 at 632.8 nm Ip = 130 MW cm−2  
  r63 = 2.6 ± 0.3 pm V−1 at 632.8 nm Infrared input: 5 kW cm−2 at degeneracy  
NPP d21 = 56.5 ± 5 pm V−1 at 1.34 µm OPA: G ≃ 104 at degeneracy (1.24 µm); (m), (o), (p), (q), (r), (s)
  d22 = 18.7 ± 2 pm V−1 at 1.34 µm  pump: 620 nm, 100 fs, 10 Hz  
  d22 = 128 pm V−1 at 1.06 µm OPO, λpump tuning: 593 < λp < 670 nm,  
  r12 = 25.5 pm V−1 at 632.8 nm  1000 < λi,s < 1500 nm  
  r22 = 24 pm V−1 at 632.8 nm OPO, birefringence tuning: λp = 670 nm,  
  n3reff = 60 pm V−1 at 1.34 µm  900 < λi,s < 1700 nm  
    DRO threshold at 670 nm: 0.45 MW cm−2,  
     pump: 2.3 MW cm−2 (60 ns, 10 Hz).  
     Yield: 4.5%, IRoutput 90 µJ  
2A5NPDP At 1.34 µm: d33 = 12 ± 1 pm V−1, d15 = 6 ± 1 pm V−1 OPA: Γ = 29 ± 3 cm−1 (Ip = 30 GW cm−2); (r), (s), (t), (u)
  At 1.06 µm: d24 = 1 ± 0.4 pm V−1, d15 = 7 ± 1 pm V−1  deff = 2.6 ± 0.5 pm V−1; λs = 1.005 µm, λp = 612 nm  
    OPA: Γ = 19 ± 3 cm−1, G = 106, λs = 1 µm, λi = 1.5 µm, λp = 612 nm  
    OPO: λpump tuning: 565 < λp < 590 nm; λs ≃ 1.003 µm; 1286 < λi < 1500 nm  
    SRO: threshold: 6 MW cm−2; Ip = 37.2 MW cm−2 (7 ns, 10 Hz); yield 3%, IRoutput 150 µJ  
DAST [d_{11}](1318 nm) = 1010 pm V−1 Terahertz generation (difference frequency mixing) (v), (w)
  [d_{11}](1542 nm) = 290 pm V−1    
  [d_{26}](1542 nm) = 39 pm V−1    
  [r_{11}](720 nm) = 92 pm V−1    
  [r_{11}](1313 nm) = 53 pm V−1    
  [r_{11}](1535 nm) = 47 pm V−1    
2A5NPCl [d_{11}] = 9 ± 4 pm V−1   (x)
  [d_{12}] = 8 ± 3 pm V−1    
  [d_{13}] = 11 ± 4 pm V−1    
  [d_{\rm eff}] = 5.1 pm V−1 or 9.7 pm V−1    
References: (a) Halbout et al., 1979[link]; (b) Morrell et al., 1979[link]; (c) Donaldson & Tang, 1984[link]; (d) Rosker et al., 1985[link]; (e) Puccetti et al., 1993[link]; (f) Oudar & Hierle, 1977[link]; (g) Levine et al., 1979[link]; (h) Lipscomb et al., 1981[link]; (i) Morita et al., 1988[link]; (j) Zyss et al., 1981[link]; (k) Sigelle & Hierle, 1981[link]; (l) Zyss et al., 1985[link]; (m) Ledoux et al., 1987[link]; (n) Josse et al., 1988[link]; (o) Ledoux et al., 1990[link]; (p) Josse et al., 1992[link]; (q) Khodja et al., 1995[link](b); (r) Khodja, 1995[link]; (s) Zyss et al., 1984[link]; (t) Kotler et al., 1992[link]; (u) Fève et al., 1999[link]; (v) Bosshard, 2000[link]; (w) Kawase et al., 2000[link]; (x) Horiuchi et al., 2002[link].

A complete review of mineral crystals is given in Bordui & Fejer (1993[link]). General references for organic crystals may be found, for example, in Chemla & Zyss (1987[link]), Zyss (1994[link]), and Dmitriev et al. (1991[link]). Perry (1991[link]) deals with both organic and inorganic materials.

A new generation of materials has been developed since 1995 for the design of new compact all-solid-state laser sources. These optical materials are multifunction crystals, such as LiNbO3:Nd3+, Ba2NaNb5O15:Nd3+, CaGd4(BO3)3O:Nd3+ or YAl3(BO3)4:Yb3+, for example, in which the laser effect and the nonlinear frequency conversion occur simultaneously inside the same crystal. An overview of these attractive materials is given in Brenier (2000[link]).

References

Bordui, P. F. & Fejer, M. M. (1993). Inorganic crystals for nonlinear optical frequency conversion. Annu. Rev. Mater. Sci. 23, 321–379.
Brenier, A. (2000). The self-doubling and summing lasers: overview and modelling. J. Lumin. 91, 121–132.
Chemla, D. S. & Zyss, J. (1987). Nonlinear optical properties of organic molecules and crystals. Quantum electronic principles and applications series. New York: Academic Press.
Dmitriev, V. G., Gurzadian, G. G. & Nikogosyan, D. N. (1991). Handbook of nonlinear optical crystals. Heidelberg: Springer-Verlag.
Zondy, J. J. (1991). Comparative theory of walkoff-limited type II versus type-I second harmonic generation with Gaussian beams. Optics Comm. 81(6), 427–440.
Zyss, J. (1994). Editor. Molecular nonlinear optics: materials, physics and devices. Quantum electronic principles and applications series. New York: Academic Press.








































to end of page
to top of page