International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D, ch. 3.3, pp. 393-448
https://doi.org/10.1107/97809553602060000644

Chapter 3.3. Twinning of crystals

Th. Hahna* and H. Klapperb

aInstitut für Kristallographie, Rheinisch–Westfälische Technische Hochschule, D-52056 Aachen, Germany, and bMineralogisch-Petrologisches Institut, Universität Bonn, D-53113 Bonn, Germany
Correspondence e-mail:  hahn@xtal.rwth-aachen.de

References

Abrahams, S. C. (1994). Structure relationship to dielectric, elastic and chiral properties. Acta Cryst. A50, 658–685.
Aizu, K. (1969). Possible species of `ferroelastic' crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn, 27, 387–396.
Aizu, K. (1970a). Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B, 2, 754–772.
Aizu, K. (1970b). Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn, 28, 706–716.
Aizu, K. (1973). Second-order ferroic state shifts. J. Phys. Soc. Jpn, 34, 121–128.
Amelinckx, S., Gevers, R. & Van Landuyt, J. (1978). Editors. Diffraction and imaging techniques in materials science, Vol. I. Electron microscopy, especially pp. 107–151. Amsterdam: North-Holland.
Aminoff, G. & Broomé, B. (1931). Strukturtheoretische Studien über Zwillinge I. Z. Kristallogr. 80, 355–376.
Arlt, G. (1990). Twinning in ferroelectric and ferroelastic ceramics: stress relief. J. Mater. Sci. 25, 2655–2666.
Arzruni, A. (1887). Ein neues Zwillingsgesetz im regulären System. Proc. Russ. Mineral. Soc. St. Petersburg, 23, 126–132. (In German.)
Authier, A. & Sauvage, M. (1966). Dislocations de macle dans la calcite: interférences entre les champs d'onde créés à la traversée d'une lamelle de macle. J. Phys. Rad. (France), 27, 137–142.
Barber, D. J. & Wenk, H.-R. (1979). Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Phys. Chem. Miner. 5, 141–165.
Barrett, C. S. & Massalski, T. B. (1966). Structure of metals, 3rd edition, especially pp. 406–414. New York: McGraw-Hill.
Bartels, H. & Follner, H. (1989). Crystal growth and twin formation of gypsum. Cryst. Res. Technol. 24, 1191–1196.
Baumhauer, H. (1879). Über künstliche Kalkspath-Zwillinge nach -1/2R. Z. Kristallogr. 3, 588–591.
Becke, F. (1911). Über die Ausbildung der Zwillingskristalle. Fortschr. Mineral. Kristallogr. Petrogr. 1, 48–65.
Billiet, Y. & Bertaut, E. F. (2005). Isomorphic subgroups of space groups. Part 13 of International tables for crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
Bismayer, U., Röwer, R. W. & Wruck, B. (1995). Ferroelastic phase transition and renormalization effect in diluted lead phosphate, (Pb1−xSrx)3(PO4)2 and (Pb1−xBax)3(PO4)2. Phase Transit. 55, 169–179.
Black, P. J. (1955). The structure of FeAl3. II. Acta Cryst. 8, 175–182.
Blackburn, J. & Salje, E. K. H. (1999). Time evolution of twin domains in cordierite: a computer simulation study. Phys. Chem. Miner. 26, 275–296.
Bloss, F. D. (1971). Crystallography and crystal chemistry, pp. 324–338. New York: Holt, Rinehart & Winston.
Bögels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth, 203, 554–563.
Bögels, G., Meekes, H., Bennema, P. & Bollen, D. (1998). The role of {100} side faces for lateral growth of tabular silver bromide crystals. J. Cryst. Growth, 191, 446–454.
Bögels, G., Pot, T. M., Meekes, H., Bennema, P. & Bollen, D. (1997). Side-face structure and growth mechanism of tabular silver bromide crystals. Acta Cryst. A53, 84–94.
Bollmann, W. (1970). Crystal defects and crystalline interfaces. ch. 12, pp. 143–148. Berlin: Springer.
Bollmann, W. (1982). Crystal lattices, interfaces, matrices, pp. 111–249. Geneva: published by the author.
Bonner, W. A. (1981). InP synthesis and LEC growth of twin-free crystals. J. Cryst. Growth, 54, 21–31.
Böttcher, P., Doert, Th., Arnold, H. & Tamazyan, R. (2000). Contributions to the crystal chemistry of rare-earth chalcogenides. I. The compounds with layer structures LnX2. Z. Kristallogr. 215, 246–253.
Boulesteix, C. (1984). A survey of domains and domain walls generated by crystallographic phase transitions causing a change of the lattice. Phys. Status Solidi A, 86, 11–42.
Boulesteix, C., Yangui, B., Ben Salem, M., Manolakis, C. & Amelinckx, S. (1986). The orientation relations of interfaces between a prototype phase and its ferroelastic derivatives: theoretical and experimental studies. J. Phys. 47, 461–471.
Bragg, W. L. (1924). The structure of aragonite. Proc. R. Soc. London Ser. A, 105, 16–39.
Bragg, W. L. (1937). Atomic structure of minerals. Ithaca, NY: Cornell University Press.
Bragg, W. L. & Claringbull, G. F. (1965). The crystalline state, Vol. IV. Crystal structures of minerals, p. 302. London: Bell & Sons.
Bringhurst, K. N. & Griffin, D. T. (1986). Staurolite–lukasite series. II. Crystal structure and optical properites of a cobaltoan staurolite. Am. Mineral. 71, 1466–1472.
Brögger, W. C. (1890). Hydrargillit. Z. Kristallogr. 16, second part, pp. 16–43, especially pp. 24–43 and Plate 1.
Bueble, S., Knorr, K., Brecht, E. & Schmahl, W. W. (1998). Influence of the ferroelastic twin domain structure on the 100 surface morphology of LaAlO3 HTSC substrates. Surface Sci. 400, 345–355.
Bueble, S. & Schmahl, W. W. (1999). Mechanical twinning in calcite considered with the concept of ferroelasticity. Phys. Chem. Miner. 26, 668–672.
Buerger, M. J. (1934). The lineage structure of crystals. Z. Kristallogr. 89, 195–220.
Buerger, M. J. (1945). The genesis of twin crystals. Am. Mineral. 30, 469–482.
Buerger, M. J. (1960a). Crystal-structure analyses, especially ch. 3. New York: Wiley.
Buerger, M. J. (1960b). Introductory remarks. Twinning with special regard to coherence. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 3 and 5–7. Madrid: CSIC.
Buseck, P. R., Cowley, J. M. & Eyring, L. (1992). Editors. High-resolution transmission electron microscopy and associated techniques, especially ch. 11. New York: Oxford University Press.
Cahn, R. W. (1954). Twinned crystals. Adv. Phys. 3, 202–445.
Chalmers, B. (1959). Physical metallurgy, especially ch. 4.4. New York: Wiley.
Chernysheva, M. A. (1950). Mechanical twinning in crystals of Rochelle salt. Dokl. Akad. Nauk SSSR, 74, 247–249. (In Russian.)
Chernysheva, M. A. (1951). Effects of an electric field on the twinned structure of Rochelle salt. Dokl. Akad. Nauk SSSR, 81, 1965–1968. (In Russian.)
Chernysheva, M. A. (1955). Twinning phenomena in crystals of Rochelle salt. PhD thesis, Moscow. (In Russian.)
Christian, J. W. (1965). The theory of transformations in metals and alloys, especially chs. 8 and 20. Oxford: Pergamon.
Chung, H., Dudley, M., Larson, D. J., Hurle, D. T. J., Bliss, D. F. & Prasad, V. (1998). The mechanism of growth-twin formation in zincblende crystals: insights from a study of magnetic-liquid encapsulated Czochralski grown InP single crystals. J. Cryst. Growth, 187, 9–17.
Cottrell, A. H. (1955). Theoretical structural metallurgy, 2nd edition, especially ch. 14.5. London: Edward Arnold.
Curien, H. (1960). Sur les axes de macle d'ordre supérieur à deux. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 9–11. Madrid: CSIC.
Curien, H. & Donnay, J. D. H. (1959). The symmetry of the complete twin. Am. Mineral. 44, 1067–1071.
Curien, H. & Le Corre, Y. (1958). Notation des macles à l'aide du symbolisme des groupes de couleurs de Choubnikov. Bull. Soc. Fr. Minéral. Cristallogr. 81, 126–132.
Devouard, B., Pósfai, M., Hua, X., Bazylinski, D. A., Frankel, R. B. & Buseck, P. R. (1998). Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral. 83, 1387–1398.
Docherty, R., El-Korashy, A., Jennissen, H.-D., Klapper, H., Roberts, K. J. & Scheffen-Lauenroth, T. (1988). Synchrotron Laue topography studies of pseudo-hexagonal twinning. J. Appl. Cryst. 21, 406–415.
Donnay, G. & Donnay, J. D. H. (1974). Classification of triperiodic twins. Can. Mineral. 12, 422–425.
Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99–158). In International tables for X-ray crystallography, Vol. II, Mathematical tables, edited by J. C. Kasper & K. Lonsdale. Birmingham: Kynoch Press.
Donnay, J. D. H. & Donnay, G. (1983). The staurolite story. Tschermaks Mineral. Petrogr. Mitt. 31, 1–15.
Dudley, M., Raghothamachar, B., Guo, Y., Huang, X. R., Chung, H., Hurle, D. T. J. & Bliss, D. F. (1998). The influence of polarity on twinning in zincblende structure crystals: new insights from a study of magnetic liquid-encapsulated Czochralski-grown InP crystals. J. Cryst. Growth. 192, 1–10.
Ellner, M. (1995). Polymorphic phase transformation of Fe4Al13 causing multiple twinning with decagonal pseudo-symmetry. Acta Cryst. B51, 31–36.
Ellner, M. & Burkhardt, U. (1993). Zur Bildung von Drehmehrlingen mit pentagonaler Pseudosymmetrie beim Erstarrungsvorgang des Fe4Al13. J. Alloy. Compd. 198, 91–100.
Engel, G., Klapper, H., Krempl, P. & Mang, H. (1989). Growth twinning in quartz-homeotypic gallium orthophosphate crystals. J. Cryst. Growth, 94, 597–606.
Ernst, F., Finnis, M. W., Koch, A., Schmidt, C., Straumal, B. & Gust, W. (1996). Structure and energy of twin boundaries in copper. Z. Metallkd. 87, 911–922.
Flack, H. D. (1987). The derivation of twin laws for (pseudo-)merohedry by coset decomposition. Acta Cryst. A43, 564–568.
Fleming, S. D., Parkinson, G. M. & Rohl, A. L. (1997). Predicting the occurrence of reflection twins. J. Cryst. Growth, 178, 402–409.
Fousek, J. & Janovec, V. (1969). The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135–142.
Friedel, G. (1904). Etude sur les groupements cristallins. Extrait du Bulletin de la Société d' Industrie Minérale, Quatrième Série, Tomes III et IV. Saint Etienne: Imprimerie Théolier J. et Cie.
Friedel, G. (1923). Sur les macles du quartz. Bull. Soc. Fr. Minéral. Cristallogr. 46, 79–95.
Friedel, G. (1926). Lecons de cristallographie, ch. 15. Nancy, Paris, Strasbourg: Berger-Levrault. [Reprinted (1964). Paris: Blanchard].
Friedel, G. (1933). Sur un nouveau type de macles. Bull. Soc. Fr. Minéral. Cristallogr. 56, 262–274.
Friedel, J. (1964). Dislocations, especially ch. 6. Oxford: Pergamon.
Frondel, C. (1962). The system of mineralogy, 7th edition, Vol. III. Silica minerals, especially pp. 75–99. New York: Wiley.
Gottschalk, H., Patzer, G. & Alexander, H. (1978). Stacking fault energy and ionicity of cubic III–V compounds. Phys. Status Solidi A, 45, 207–217.
Gottstein, G. (1984). Annealing texture developments by multiple twinning in fcc crystals. Acta Metall. 32, 1117–1138.
Gottstein, G. & Shvindlerman, L. S. (1999). Grain boundary migration in metals, ch. 2, pp. 105–123. Boca Raton, London, New York, Washington DC: CRC Press.
Grimmer, H. (1989). Systematic determination of coincidence orientations for all hexagonal lattices with axial ratio c/a in a given interval. Acta Cryst. A45, 320–325.
Grimmer, H. (2003). Determination of all misorientations of tetragonal lattices with low multiplicity; connection with Mallard's rule of twinning. Acta Cryst. A59, 287–296.
Hahn, Th. (2005). Editor. International tables for crystallography, Vol. A. Space-group symmetry. 5th ed. Heidelberg: Springer.
Hahn, Th., Janovec, V. & Klapper, H. (1999). Bicrystals, twins and domain structures – a comparison. Ferroelectrics, 222, 11–21.
Hahn, Th. & Klapper, H. (2005). Point groups and crystal classes. Part 10 in International tables for crystallography, Vol. A. Space-group symmetry, edited by Th. Hahn, 5th edition. Heidelberg: Springer.
Hartman, P. (1956). On the morphology of growth twins. Z. Kristallogr. 107, 225–237.
Hartman, P. (1960). Epitaxial aspects of the atacamite twin. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 15–18. Madrid: CSIC.
Heide, F. (1928). Die Japaner-Zwillinge des Quarzes und ihr Auftreten im Quarzporphyr von Saubach i. V. Z. Kristallogr. 66, 239–281.
Henke, H. (2003). Crystal structures, order–disorder transition and twinning of the Jahn–Teller system (NO)2VCl6. Z. Kristallogr. 218, 617–625.
Herbst-Irmer, R. & Sheldrick, G. M. (1998). Refinement of twinned structures with SHELXL97. Acta Cryst. B54, 443–449.
Hoffmann, D. & Ernst, F. (1994). Twin boundaries with 9R zone in Cu and Ag studied by quantitative HRTEM. Interface Sci. 2, 201–210.
Hofmeister, H. (1998). Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3–25, especially Section 4.
Hofmeister, H. & Junghans, T. (1993). Multiple twinning in the solid phase. Crystallisation of amorphous germanium. Mater. Sci. Forum, 113–115, 631–636.
Holser, W. T. (1958). Relation of structure to symmetry in twinning. Z. Kristallogr. 110, 250–265.
Holser, W. T. (1960). Relation of pseudosymmetry to structure in twinning. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 19–30. Madrid: CSIC.
Hornstra, J. (1959). Models of grain boundaries in the diamond lattice I. Physica, 25, 409–422.
Hornstra, J. (1960). Models of grain boundaries in the diamond lattice II. Physica, 26, 198–208.
Hurle, D. T. J. (1995). A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III–V compound semiconductors. J. Cryst. Growth, 147, 239–250.
Hurst, V. J., Donnay, J. D. H. & Donnay, G. (1956). Staurolite twinning. Mineral. Mag. 31, 145–163.
Ikeno, S., Maruyama, H. & Kato, N. (1968). X-ray topographic studies of NaCl crystals grown from aqueous solution with Mn ions. J. Cryst. Growth, 3/4, 683–693.
Iliescu, B. & Chirila, R. (1995). Electrical twinning of quartz by temperature gradient. Cryst. Res. Technol. 30, 231–235.
Iliescu, B., Enculescu, I. & Chirila, R. (1997). Dynamics of the Dauphiné twins in quartz crystals up to the transition point. Ferroelectrics, 190, 119–124.
Janovec, V. (1972). Group analysis of domains and domain pairs. Czech. J. Phys. B, 22, 974–994.
Janovec, V. (1976). A symmetry approach to domain structures. Ferroelectrics, 12, 43–53.
Janovec, V. (2003). Personal communication.
Jennissen, H.-D. (1990). Phasenumwandlungen und Defektstrukturen in Kristallen mit tetraedrischen Baugruppen. PhD thesis, Institut für Kristallographie, RWTH Aachen.
Jia, C. L. & Thust, A. (1999). Investigations of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieved electron microscopy. Phys. Rev. Lett. 82, 5052–5055.
Johnsen, A. (1907). Tschermak's Zwillingstheorie und das Gesetz der Glimmerzwillinge. Centralbl. Mineral. Geolog. Palaeontol. pp. 400–409, especially p. 407.
Judd, J. W. (1888). The development of a lamellar structure in quartz crystals by mechanical means. Mineral. Mag. 8, 1–9 and plate I.
Keester, K. L., Housley, R. M. & Marshall, D. B. (1988). Growth and characterization of large YBa2Cu3O7−x single crystals. J. Cryst. Growth, 91, 295–301.
Kelly, A. & Groves, G. W. (1970). Crystallography and crystal defects, especially chs. 10 and 12.5. London: Longman.
Klapper, H. (1973). Röntgentopographische Untersuchungen am Lithiumformiat-Monohydrat. Z. Naturforsch. A, 28, 614–622.
Klapper, H. (1987). X-ray topography of twinned crystals. In Progress in crystal growth and characterization, Vol. 14, edited by P. Krishna. pp. 367–401. Oxford: Pergamon.
Klapper, H., Hahn, Th. & Chung, S. J. (1987). Optical, pyroelectric and X-ray topographic studies of twin domains and twin boundaries in KLiSO4. Acta Cryst. B43, 147–159.
Klassen-Neklyudova, M. V. (1964). Mechanical twinning of crystals. New York: Consultants Bureau.
Koch, E. (2004). Twinning. In International tables for crystallography, Vol. C. Mathematical, physical and chemical tables, edited by E. Prince, 3rd ed., ch. 1.3. Dordrecht: Kluwer Academic Publishers.
Kohn, J. A. (1956). Twinning in diamond-type structures: high-order twinning in silicon. Am. Mineral. 41, 778–784.
Kohn, J. A. (1958). Twinning in diamond-type structures: a proposed boundary-structure model. Am. Mineral. 43, 263–284.
Kotrbova, M., Kadeckova, S., Novak, J., Bradler, J., Smirnov, G. V. & Shvydko, Yu. V. (1985). Growth and perfection of flux-grown FeBO3 and 57FeBO3 crystals. J. Cryst. Growth, 71, 607–614.
Krafczyk, S., Jacobi, H. & Follner, H. (1997). Twinning of crystals as a result of differences between symmetrical and energetically most favourable structure arrangements. III. Cryst. Res. Technol. 32, 163–173, and earlier references cited therein.
Lang, A. R. (1967a). Some recent applications of X-ray topography. Adv. X-ray Anal. 10, 91–107.
Lang, A. R. (1967b). Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution. In Crystal growth, edited by H. S. Peiser, pp. 833–838. (Supplement to Phys. Chem. Solids.) Oxford: Pergamon Press.
Lang, A. R. & Miuskov, V. F. (1969). Defects in natural and synthetic quartz. In Growth of crystals, edited by N. N. Sheftal, Vol. 7, 112–123. New York: Consultants Bureau.
Le Page, Y. (1999). Low obliquity in pseudo-symmetry of lattices and structures, and in twinning by pseudo-merohedry. Acta Cryst. A55, Supplement. Abstract M12.CC001.
Le Page, Y. (2002). Mallard's law recast as a Diophantine system: fast and complete enumeration of possible twin laws by [reticular] [pseudo] merohedry. J. Appl. Cryst. 35, 175–181.
Lieber, W. (2002). Personal communication.
Lieberman, H. F., Williams, L., Davey, R. J. & Pritchard, R. G. (1998). Molecular configuration at the solid–solid interface: twinning in saccharine crystals. J. Am. Chem Soc. 120, 686–691.
Liebisch, Th. (1891). Physikalische Kristallographie. Leipzig: Veit & Comp.
McLaren, A. C. (1986). Some speculations on the nature of high-angle grain boundaries in quartz rocks. In Mineral and rock deformation: laboratory studies, edited by B. E. Hobbs & H. C. Heard. Geophys. Monogr. 36, 233–245.
McLaren, A. C. (1991). Transmission electron microscopy of minerals and rocks. Cambridge University Press.
McLaren, A. C. & Phakey, P. P. (1966). Electron microscope study of Brazil twin boundaries in amethyst quartz. Phys. Status Solidi, 13, 413–422.
McLaren, A. C. & Phakey, P. P. (1969). Diffraction contrast from Dauphiné twin boundaries in quartz. Phys. Status Solidi, 31, 723–737.
Mallard, E. (1879). Traité de cristallographie, géométrie et physique. Vol. I. Paris: Dunod.
Menzer, G. (1955). Über Kristallzwillingsgesetze. Z. Kristallogr. 106, 193–198.
Ming, N. B. & Sunagawa, I. (1988). Twin lamellae as possible self-perpetuating step sources. J. Cryst. Growth, 87, 13–17.
Mügge, O. (1883). Beiträge zur Kenntnis der Structurflächen des Kalkspathes. Neues Jahrb. Mineral. 81, 32–54.
Mügge, O. (1911). Über die Zwillingsbildung der Kristalle. Fortschr. Mineral. Kristallogr. Petrogr. 1, 18–47.
Müller, W. F., Wolf, Th. & Flükiger, R. (1989). Microstructure of superconducting ceramics of YBa2Cu3O7−x. Neues Jahrb. Mineral. Abh. 161, 41–67.
Nespolo, M., Ferraris, G. & Takeda, H. (2000). Twins and allotwins of basic mica polytypes: theoretical derivation and identification in the reciprocal space. Acta Cryst. A56, 132–148.
Nespolo, M., Ferraris, G., Takeda, H. & Takeuchi, Y. (1999). Plesiotwinning: oriented crystal associations based on a large coincidence-site lattice. Z. Kristallogr. 214, 378–382.
Nespolo, M., Kogure, T. & Ferraris, G. (1999). Allotwinning: oriented crystal association of polytypes – some warnings on consequences. Z. Kristallogr. 214, 5–8.
Nespolo, M., Takeda, H. & Ferraris, G. (1997). Crystallography of mica polytypes. In EMU notes in mineralogy, edited by St. Merlino, Vol. 1, ch. 2, pp. 81–118. Budapest: Eötvos University Press.
Neumann, W., Hofmeister, H., Conrad, D., Scheerschmidt, K. & Ruvimov, S. (1996). Characterization of interface structures in nanocrystalline germanium by means of high-resolution electron microscopy and molecular dynamics simulation. Z. Kristallogr. 211, 147–152.
Newnham, R. E. (1975). Structure–property relations, pp. 106–107. Berlin: Springer.
Niggli, P. (1919). Geometrische Kristallographie des Diskontinuums. Leipzig: Gebrüder Borntraeger. [Reprinted (1973). Wiesbaden: Sändig].
Niggli, P. (1920/1924/1941). Lehrbuch der Mineralogie und Kristallchemie, 1st edition 1920, 2nd edition 1924, 3rd edition, Part I, 1941, especially pp. 136–153, 401–414. Berlin: Gebrüder Borntraeger.
Niggli, P. (1926). Lehrbuch der Mineralogie. Band II: Spezielle Mineralogie, p. 53, Fig. 9. Berlin: Gebrüder Borntraeger.
Palmer, D. C., Putnis, A. & Salje, E. K. H. (1988). Twinning in tetragonal leucite. Phys. Chem. Mineral. 16, 298–303.
Penn, R. L. & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nano-crystalline TiO2. Am. Mineral. 83, 1077–1082.
Penn, R. L. & Banfield, J. F. (1999). Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am. Mineral. 84, 871–876.
Phakey, P. P. (1969). X-ray topographic study of defects in quartz. I. Brazil twin boundaries. Phys. Status Solidi, 34, 105–119.
Phillips, F. C. (1971). An introduction to crystallography, 4th ed. London: Longman.
Porter, D. A. & Easterling, K. E. (1992). Phase transformations in metals and alloys, 2nd edition, especially ch. 3. London: Chapman & Hall.
Putnis, A. (1992). Introduction to mineral sciences, especially chs. 7.3 and 12.4. Cambridge University Press.
Putnis, A. & Salje, E. K. H. (1994). Tweed microstructures: experimental observations and some theoretical models. Phase Transit. 48, 85–105.
Putnis, A., Salje, E. K. H., Redfern, S., Fyfe, C. & Strobl, H. (1987). Structural states of Mg-cordierite I: Order parameters from synchrotron X-ray and NMR data. Phys. Chem. Miner. 14, 446–454.
Queisser, H. J. (1963). Properties of twin boundaries in silicon. J. Electrochem. Soc. 110, 52–56.
Raaz, F. & Tertsch, H. (1958). Einführung in die geometrische und physikalische Kristallographie, 3rd edition. Wien: Springer.
Ramdohr, P. & Strunz, H. (1967). Klockmann's Lehrbuch der Mineralogie, 15th edition, especially p. 512. Stuttgart: Enke.
Räuber, A. (1978). Chemistry and physics of lithium niobate. In Current topics in materials science, Vol. 1, edited by E. Kaldis, pp. 548–550 and 585–587. Amsterdam: North Holland.
Read, W. T. (1953). Dislocations in crystals, especially ch. 7. New York: McGraw-Hill.
Rečnik, A., Brulay, J., Mader, W., Kolar, D. & Rühle, M. (1994). Structural and spectroscopic investigation of the (111) twins in barium titanite. Philos. Mag. B, 70, 1021–1034.
Rose, G. (1868). Über die im Kalkspath vorkommenden hohlen Canäle. Abh. Königl. Akad. Wiss. Berlin, 23, 57–79.
Roth, G., Ewert, D., Heger, G., Hervieu, M., Michel, C., Raveau, B., D'Yvoire, F. & Revcolevschi, A. (1987). Phase transformation and microtwinning in crystals of the high-TC superconductor YBa2Cu3O8−x, [x \approx {\it 1.0}]. Z. Physik B, 69, 21–27.
Salje, E. K. H. (1993). Phase transformations in ferroelectric and co-elastic crystals. Cambridge University Press.
Salje, E. K. H., Buckley, A., Van Tendeloo, G., Ishibashi, Y. & Nord, G. L. (1998). Needle twins and right-angled twins in minerals: comparison between experiment and theory. Am. Mineral. 83, 811–822.
Salje, E. K. H. & Ishibashi, Y. (1996). Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys. Condens. Matter, 8, 1–19.
Salje, E. K. H., Kuscholke, B. & Wruck, B. (1985). Domain wall formation in minerals: I. Theory of twin boundary shapes in Na-feldspar. Phys. Chem. Miner. 12, 132–140.
Santoro, A. (1974). Characterization of twinning. Acta Cryst. A30, 224–231.
Sapriel, J. (1975). Domain-wall orientations in ferroelastics. Phys. Rev. B, 12, 5128–5140.
Sauvage, M. (1968). Observations de sources et de réactions entre dislocations partielles de macle sur des topographies aux rayons X. Phys. Status Solidi, 29, 725–736.
Sauvage, M. & Authier, A. (1965). Etude des bandes de croissance et des dislocations de macle dans la calcite. Bull. Soc. Fr. Minéral. Cristallogr. 88, 379–388.
Schaskolsky, M. & Schubnikow, A. (1933). Über die künstliche Herstellung gesetzmässiger Kristallverwachsungen des Kalialauns. Z. Kristallogr. 85, 1–16.
Scherf, Ch., Hahn, Th., Heger, G., Becker, R. A., Wunderlich, W. & Klapper, H. (1997). Optical and synchrotron radiation white-beam topographic investigation during the high-temperature phase transition of KLiSO4. Ferroelectrics, 191, 171–177.
Scherf, Ch., Hahn, Th., Heger, G., Ivanov, N. R. & Klapper, H. (1999). Imaging of inversion twin boundaries in potassium titanyl phosphate (KTP) by liquid-crystal surface decoration and X-ray diffraction topography. Philos. Trans. R. Soc. London Ser. A, 357, 2651–2658.
Schmahl, W. W., Putnis, A., Salje, E. K. H., Freeman, P., Graeme-Barber, A., Jones, R., Singh, K. K., Blunt, J., Edwards, P. P., Loran, J. & Mirza, K. (1989). Twin formation and structural modulations in orthorhombic and tetragonal YBa2(Cu1−xCox)3O7−δ. Philos. Mag. Lett. 60, 241–251.
Schmid, H., Burkhardt, E., Walker, E., Brixel, W., Clin, M., Rivera, J.-P., Jorda, J.-L., François, M. & Yvon, K. (1988). Polarized light and X-ray precession study of the ferroelastic domains of YBa2Cu3O7−d. Z. Phys. B, 72, 305–322.
Schubnikow, A. & Zinserling, K. (1932). Über die Schlag- und Druckfiguren und über die mechanischen Quarzzwillinge. Z. Kristallogr. 83, 243–264.
Seifert, H. (1928). Über Schiebungen am Bleiglanz. Neues Jahrb. Mineral. Geol. Palaeontol. 57, Beilage-Band, Abteilung A, Mineralogie und Petrographie, pp. 665–742.
Senechal, M. (1976). The mechanism of formation of certain growth twins of the penetration type. Neues Jahrb. Mineral. Monatsh. pp. 518–525.
Senechal, M. (1980). The genesis of growth twins. Sov. Phys. Crystallogr. 25, 520–524.
Shektman, V. Sh. (1993). Editor. The real structure of high-Tc superconductors, especially ch. 3, Twins and structure of twin boundaries, by I. M. Shmyt'ko & V. Sh. Shektman. Berlin: Springer.
Shtukenberg, A. G., Punin, Yu. O., Haegele, E. & Klapper, H. (2001). On the origin of inhomogeneity of anomalous birefringence in mixed crystals: an example of alums. Phys. Chem. Miner. 28, 665–674.
Shuvalov, L. A., Dudnik, E. F. & Wagin, S. V. (1985). Domain structure geometry of real ferroelastics. Ferroelectrics, 65, 143–152.
Smith, D. J., Bursill, L. A. & Wood, G. J. (1983). High resolution electron microscopic study of tin dioxide crystals. J. Solid State Chem. 50, 51–69.
Smith, J. V. (1968). The crystal structure of staurolite. Am. Mineral. 53, 1139–1155.
Sunagawa, I. & Tomura, S. (1976). Twinning in phlogopite. Am. Mineral. 61, 939–943.
Sutton, A. P. & Balluffi, R. W. (1995). Interfaces in crystalline materials, Section 1.5, pp. 25–41. Oxford: Clarendon Press.
Sweegers, C., van Enckevort, W. J. P., Meekes, H., Bennema, P., Hiralal, I. D. K. & Rijkeboer, A. (1999). The impact of twinning on the morphology of γ-Al(OH)3 crystals. J. Cryst. Growth, 197, 244–253.
Takano, Y. (1972). Classification of twins IV. Ordinary twins. J. Jpn. Assoc. Mineral. Petrogr. Econ. Geol. 67, 345–351.
Takano, Y. & Sakurai, K. (1971). Classification of twins I. Bisecting twin axes and principal twin axes. Mineral. J. (Jpn), 6, 375–382.
Takeda, H. & Donnay, J. D. H. (1965). Compound tessellations in crystal structures. Acta Cryst. 19, 474–476.
Takeuchi, Y. (1997). Tropochemical cell-twinning. Tokyo: Terra Scientific Publishing Company.
Tamazyan, R., Arnold, H., Molchanov, V. N., Kuzmicheva, G. M. & Vasileva, I. G. (2000a). Contribution to the crystal chemistry of rare-earth chalcogenides. II. The crystal structure and twinning of rare-earth disulfide PrS2. Z. Kristallogr. 215, 272–277.
Tamazyan, R., Arnold, H., Molchanov, V. N., Kuzmicheva, G. M. & Vasileva, I. G. (2000b). Contribution to the crystal chemistry of rare-earth chalcogenides. III. The crystal structure and twinning of SmS1.9. Z. Kristallogr. 215, 346–351.
Taylor, C. A. & Underwood, F. A. (1960). A twinning interpretation of `superlattice' reflexions in X-ray photographs of synthetic klockmannite, CuSe. Acta Cryst. 13, 361–362.
Tertsch, H. (1936). Bemerkungen zur Frage der Verbreitung und zur Geometrie der Zwillingsbildungen. Z. Kristallogr. 94, 461–490.
Thomas, L. A. & Wooster, W. A. (1951). Piezocrescence - the growth of Dauphiné twinning in quartz under stress. Proc. R. Soc. London Ser. A, 208, 43–62.
Tohno, S. & Katsui, A. (1986). X-ray topographic study of twinning in InP crystals grown by the liquid-encapsulated Czochralski technique. J. Cryst. Growth, 74, 362–374.
Tsatskis, I. & Salje, E. K. H. (1996). Time evolution of pericline twin domains in alkali feldspars. A computer-simulation study. Am. Mineral. 81, 800–810.
Tschermak, G. (1884, 1905). Lehrbuch der Mineralogie, 1st ed. 1884, 6th ed. 1905. Wien: Alfred Hölder.
Tschermak, G. (1904). Einheitliche Ableitung der Kristallisations- und Zwillingsgesetze. Z. Kristallogr. 39, 433–462, especially 456–462.
Tschermak, G. & Becke, F. (1915). Lehrbuch der Mineralogie, 7th edition, pp. 93–114. Wien: Alfred Hölder.
Tsuchimori, M., Ishimasa, T. & Fukano, Y. (1992). Crystal structures of small Al-rich Fe alloy particles formed by a gas-evaporation technique. Philos. Mag. B, 66, 89–108, especially Section 4.
Van Bueren, H. G. (1961). Imperfections in crystals, especially chs. 13.4 and 19. Amsterdam: North-Holland.
Van Tendeloo, G. & Amelinckx, S. (1974). Group-theoretical considerations concerning domain formation in ordered alloys. Acta Cryst. A30, 431–440.
Wadhawan, V. K. (1997). A tensor classification of twinning in crystals. Acta Cryst. A53, 546–555.
Wadhawan, V. K. (2000). Introduction to ferroic materials, ch. 7. Amsterdam: Gordon and Breach.
Wallace, C. A. & White, E. A. D. (1967). The morphology and twinning of solution-grown corundum crystals. In Crystal growth, edited by H. S. Peiser (Supplement to Phys. Chem. Solids), pp. 431–435. Oxford: Pergamon.
Weertman, J. & Weertman, J. R. (1964). Elementary dislocation theory, especially ch. 5. New York: MacMillan.
Wenk, H.-R. (1976). Editor. Electron microscopy in mineralogy, especially ch. 2.3. Berlin: Springer.
Wondratschek, H. & Jeitschko, W. (1976). Twin domains and antiphase domains. Acta Cryst. A32, 664–666.
Zheludev, I. S. (1971). Physics of crystalline dielectrics, Vol. 1. Crystallography and spontaneous polarization. New York: Plenum Press.
Zheludev, I. S. & Shuvalov, L. A. (1956). Seignettoelectric phase transitions and crystal symmetry. Kristallografiya, 1, 681–688. (In Russian.) (English translation: Sov. Phys. Crystallogr. 1, 537–542.)
Zikmund, Z. (1984). Symmetry of domain pairs and domain twins. Czech. J. Phys. B, 34, 932–949.
Zinserling, K. & Schubnikow, A. (1933). Über die Plastizität des Quarzes. Z. Kristallogr. 85, 454–461.