
1.5. MAGNETIC PROPERTIES

ions located in the white sites. All the magnetic moments of
one sublattice are oriented in one direction and those of the
other sublattice in the opposite direction. However, antiferro-
magnetism is allowed also in trivial lattices if the (trivial)
magnetic cell contains more than one magnetic ion. The
magnetic point group must be nontrivial in this case. The
situation is more complicated in case of strongly non-collinear
structures. In such structures (triangle, 90� etc.), the magnetic
lattice can differ from the crystallographic one despite the fact
that none of the translations is multiplied by R. The magnetic
elementary cell will possess three or four magnetic ions although
the crystallographic cell possesses only one. An example of such a
situation is shown in Fig. 1.5.1.3(c). There also exist structures in
which the magnetic lattice is incommensurate with the crystal-
lographic one. We shall not discuss the problems of such systems
in this chapter.

1.5.2.3. Magnetic space groups

There are 1651 magnetic space groups MG, which can be
divided into three types. Type I, MG1, consists of the 230 crys-
tallographic space groups to which R is added. Crystals belonging
to these trivial magnetic space groups show no magnetic order;
they are para- or diamagnetic.

Type II,MG2, consists of the same 230 crystallographic groups
which do not include R in any form. In the magnetically ordered
crystals that belong to the magnetic space groups of this type, the
magnetic unit cell coincides with the classical one. Forty-four

groups of type II describe different ferromagnetic crystals; the
remaining antiferromagnets.

The nontrivial magnetic space groups belong to type III,MG3.
This consists of 1191 groups, in which R enters only in combi-
nation with rotations, reflections or translations. These groups
have the structure described by relation (1.5.2.2). The magnetic
space groups of this type are divided into two subtypes.

Subtype IIIa contains those magnetic space groups MG3 in
which R is not combined with translations. In these groups, the
magnetic translation group is trivial. To these space groups
correspond magnetic point groups of type MP3. There are 674
magnetic space groups of subtype IIIa; 231 of them admit ferro-
magnetism, the remaining 443 describe antiferromagnets.

In the magnetic space groups of the subtype IIIb, R is
combined with translations and the corresponding point groups
are of typeMP1. They have a nontrivial magnetic Bravais lattice.
There are 517 magnetic space groups of this subtype; they
describe antiferromagnets.

In summary, the 230 magnetic space groups that describe dia-
and paramagnets are of type I, the 275 that admit spontaneous
magnetization are of types II and IIIa; the remaining 1146
magnetic space groups (types II, IIIa and IIIb) describe anti-
ferromagnets.

1.5.2.4. Exchange symmetry

The classification of magnetic structures on the basis of the
magnetic (point and space) groups is an exact classification.
However, it neglects the fundamental role of the exchange
energy, which is responsible for the magnetic order (see Sections
1.5.1.2 and 1.5.3.2). To describe the symmetry of the magnetically
ordered crystals only by the magnetic space groups means the
loss of significant information concerning those properties of
these materials that are connected with the higher symmetry of
the exchange forces. Andreev & Marchenko (1976, 1980) have
introduced the concept of exchange symmetry.

The exchange forces do not depend on the directions of the
spins (magnetic moments) of the ions relative to the crystal-
lographic axes and planes. They depend only on the relative
directions of the spins. Thus the exchange group Gex contains an
infinite number of rotations U of spin space, i.e. rotations of all
the spins (magnetic moments) through the same angle about the
same axis. The components of the magnetic moment density mðrÞ
transform like scalars under all rotations of spin space. The
exchange symmetry group Gex contains those combinations of the
space transformation elements, the rotations U of spin space and
the element R with respect to which the values mðrÞ are invariant.
Setting all the elements U and R equal to the identity transfor-
mation, we obtain one of the ordinary crystallographic space
groups G. This space group defines the symmetry of the charge
density �ðrÞ and of all the magnetic scalars in the crystal.
However, the vectors mðrÞmay not be invariant with respect to G.

The concept of exchange symmetry makes it possible to clas-
sify all the magnetic structures (including the incommensurate
ones) with the help of not more than three orthogonal magnetic
vectors. We shall discuss this in more detail in Section 1.5.3.3.

More information about magnetic symmetry can be found in
Birss (1964), Cracknell (1975), Gallego et al. (2012), Joshua
(1991), Koptsik (1966), Landau & Lifshitz (1957), Opechowski &
Guccione (1965), and Sirotin & Shaskol’skaya (1979).

1.5.3. Phase transitions into a magnetically ordered state

Most transitions from a paramagnetic into an ordered magnetic
state are second-order phase transitions. A crystal with a given
crystallographic symmetry can undergo transitions to different
ordered states with different magnetic symmetry. In Section
1.5.3.3, we shall give a short review of the theory of magnetic
second-order phase transitions. As was shown by Landau (1937),
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Fig. 1.5.2.7. Magnetic lattices of the cubic system.
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such a transition causes a change in the magnetic symmetry.
The magnetic symmetry group of the ordered state is a subgroup
of the magnetic group of the material in the paramagnetic state.
But first we shall give a simple qualitative analysis of such tran-
sitions.

To find out what ordered magnetic structures may be obtained
in a given material and to which magnetic group they belong, one
has to start by considering the crystallographic space group G of
the crystal under consideration. It is obvious that a crystal in
which the unit cell contains only one magnetic ion can change
into a ferromagnetic state only if the magnetic unit cell of the
ordered state coincides with the crystallographic one. If a tran-
sition into an antiferromagnetic state occurs, then the magnetic
cell in the ordered state will be larger than the crystallographic
one if the latter contains only one magnetic ion. Such antiferro-
magnets usually belong to the subtype IIIb described in Section
1.5.2.3. In Section 1.5.3.1, we shall consider crystals that trans-
form into an antiferromagnetic state without change of the unit
cell. This is possible only if the unit cell possesses two or more
magnetic ions. To find the possible magnetic structures in this
case, one has to consider those elements of symmetry which
interchange the positions of the ions inside the unit cell (espe-
cially glide planes and rotation axes). Some of these elements
displace the magnetic ion without changing its magnetic moment,
and others change the moment of the ion. It is also essential to
know the positions of all these elements in the unit cell. All this
information is contained in the space group G. If the magnetic
ordering occurs without change of the unit cell, the translation
group T in the ordered state does not contain primed elements.
Therefore, there is no need to consider the whole crystal space
group G. It will suffice to consider the cosets of T in G. Such a
coset consists of all elements of G that differ only by a translation.
From each coset, a representative with minimum translative
component is chosen. We denote a set of such representatives by
eG; it can be made into a group by defining AB (A;B 2eG) as
the representative of the coset that contains AB. Obviously, eG
is then isomorphic to the factor group G=T and therefore to the
point group P of G.

Once more, we should like to stress that to construct the
magnetic structures and the magnetic groups of a given crystal it
is not enough to consider only the point group of the crystal. It is
necessary to perform the analysis with the help of its space group
in the paramagnetic state or of the corresponding group of coset
representatives. An example of such an analysis will be given in
the following section.

1.5.3.1. Magnetic structures in rhombohedral crystals

Following Dzyaloshinskii (1957a), we consider crystals
belonging to the crystallographic space group D6

3d ¼ R�3c. To this
group belong �-Fe2O3 and the carbonates of Mn2+, Co2+ and Ni2+.
Weak ferromagnetism was first observed in these materials.
Cr2O3, in which the magnetoelectric effect was discovered, also
belongs to this group. The magnetic ordering in these materials
occurs without change of the unit cell.

The representatives of the cosets D6
3d=T form the group eD6

3d.
Its symmetry operations are shown in Fig. 1.5.3.1. Directed along
the z axis is the threefold axis C3 and the sixfold roto-inversion
axis ~S6. Three twofold axes U2 run through the points � at right
angles to the z axis. One of these axes is directed along the x axis.
Arranged normal to each of the U2 axes are three glide planes ~�d.
The y axis is directed along one of these planes. The centre of
inversion ~I is located at the point �, lying on the z axis halfway
between two points �. The sign ~ means that the corresponding
operation is accompanied by a translation along the z axis
through half the period of the crystal (~I means that the inversion
centre is shifted from the point � to the point �). In Fig. 1.5.3.1,
the elementary period of translation along the z axis is
marked by tz. Thus the crystallographic group eD6

3d has the
following elements:

E; 2C3; 3U2; ~I; 3 ~�d; 2~S6 f1;�3z; 3ð2?Þ;
~�1; 3ðc ¼ ~mÞ;�~�3zg:

ð1:5:3:1Þ

In two types of crystals, considered below, the magnetic ions
are arranged on the z axis. If we place the magnetic ion at point 1
located between points � and � (see Fig. 1.5.3.2), then using
symmetry operations (1.5.3.1) we obtain three additional posi-
tions for other magnetic ions (points 2, 3, 4). Thus, the elementary
cell will contain four magnetic ions. This is the structure of oxides
of trivalent ions of iron and chromium (Fe2O3, Cr2O3). The
structure of these oxides is shown in Fig. 1.5.3.2. If the positions
of the magnetic ions coincide with the positions of the inversion
centre �, we obtain the structure of the carbonates of the tran-
sition metals (MnCO3, CoCO3, NiCO3, FeCO3), which is shown
in Fig. 1.5.3.3.

Evidently, the formation of a magnetic structure in the crystal
does not result in the appearance of new elements of symmetry.
The magnetic groups of magnetically ordered crystals may lack
some elements contained in the crystallographic group and some
of the remaining elements may happen to be multiplied by R
(primed). Let us find the groups of symmetry that correspond to
all possible collinear magnetic structures in rhombohedral crys-
tals with four magnetic ions in the elementary cell. We shall
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Fig. 1.5.3.1. Arrangement of the symmetry elements of the group eD6
3d.

Fig. 1.5.3.2. Crystallographic structure of transition-metal oxides of the type
�-Fe2O3.
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assume that the magnetic moments are located at the points of
the ion positions 1–4; they will be marked l�. The symmetry
transformations cannot change the length of the vectors of the
magnetic moments but they can change the direction of these
vectors and interchange the positions of the sites 1 $ 4, 2 $ 3
and 1 $ 3, 2 $ 4. This interchange of the vectors l1, l2,
l3, l4 means that these vectors form a basis of a reducible
representation of the group eD6

3d. The following linear combina-
tions of l� form irreducible representations1 of eD6

3d:

l1 ¼ l1 þ l2 � l3 � l4

l2 ¼ l1 � l2 þ l3 � l4

l3 ¼ l1 � l2 � l3 þ l4

m ¼ l1 þ l2 þ l3 þ l4: ð1:5:3:2Þ

Vectors l� characterize the antiferromagnetic states and are
called antiferromagnetic vectors. The ferromagnetic vector m
gives the total magnetic moment of the elementary cell. These
vectors describe the four possible collinear magnetic structures.
Three are antiferromagnetic structures: A1 (l1 6¼ 0, l2 ¼ l3 ¼
m ¼ 0), A2 (l2 6¼ 0, l3 ¼ l1 ¼ m ¼ 0), A3 (l3 6¼ 0, l1 ¼ l2 ¼
m ¼ 0) and one is a ferromagnetic structure, F (m 6¼ 0,
l1 ¼ l2 ¼ l3 ¼ 0). All these types are presented schematically in
Fig. 1.5.3.4.

In the description of the structures of orthoferrites, other
symbols were introduced to define the linear combinations of l�
and to denote the antiferromagnetic structures under consid-
eration (see Bertaut, 1963). The two types of symbols are
compared in Table 1.5.3.1.

It should be borne in mind that in each of these types of
magnetic ordering the respective vectors l� and m may be
directed along any direction. There are 12 types of such struc-
tures in which l� or m are directed along one of the axes or planes
of symmetry. To find out to which group of magnetic symmetry
each of these structures belongs, one needs to investigate how
each element of the crystallographic symmetry transforms the
Cartesian components of the four vectors. This is shown in Table
1.5.3.2 for the group eD6

3d. If the component keeps its direction, it
is marked by theþ sign; the� sign corresponds to reversal of the
component direction. In some cases, the transformation results in
a change of the direction of the components l�i or mi through an
angle other than 0 or �. This is marked by 0. With the help of
Table 1.5.3.2, we can easily describe all the elements of symmetry
of the magnetic group that corresponds to each structure (A�i or
Fi) with the aid of the following rule. All the elements that yield
theþ sign are included in the magnetic group as they stand, while
the elements yielding the � sign must be multiplied by R; the
elements which are marked by the sign 0 are not included in the
magnetic group.2 With the aid of this rule, Table 1.5.3.3 of the
elements of the magnetic groups for the structures under
consideration was compiled. In Table 1.5.3.4, the symbols of the
magnetic point groups of all the 12 magnetic structures consid-
ered are listed. The crystals with two ions in the elementary cell
have only two sublattices and their antiferromagnetic structures
belong to the same groups as the structures A3i ¼ Ci.

One can see from Tables 1.5.3.3 and 1.5.3.4 that, in accordance
with general theory, the magnetic point groups of the crystals
under consideration are subgroups of the trivial magnetic point
group D3dR ¼

�3m10, to which they belong in the paramagnetic
state. In the example considered, the translation group does not
change in going from the paramagnetic to the ordered state. Thus
the same statement made for the point groups is also true for the
space groups. Putting R ¼ E gives a subgroup of the crystal-
lographic group of the crystal. For the magnetic structures with
the ferromagnetic or antiferromagnetic vector directed along the
z axis, it turns out that the magnetic group is isomorphic to the
crystallographic group. This rule is obeyed by all (optically)
uniaxial crystals if the transition occurs without change of the
elementary cell. (Optically uniaxial are the non-cubic crystals
with a point group possessing a threefold, fourfold or sixfold
axis.)

Tables 1.5.3.3 and 1.5.3.4 show that different types of collinear
structures may belong to the same point group (and also to the
same space group). For the antiferromagnetic structure A3y and
the ferromagnetic Fx the group is 2=m, and for the structures A3x

and Fy it is 20=m0. Thus the symmetry allows a phase to be
simultaneously ferromagnetic and antiferromagnetic. That is not
ferrimagnetic order because all the ions in the four sublattices are
identical and their numbers are equal. The ferromagnetic vector
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Fig. 1.5.3.4. Four types of magnetic structures of rhombohedral oxides of
transition metals. The direction of l� is shown conventionally.

Fig. 1.5.3.3. Crystallographic structure of transition-metal carbonates of the
type MnCO3.

Table 1.5.3.1. Two types of symbols for collinear antiferromagnetic and
ferromagnetic structures

Symbol
Alternative
symbol

A1 A
A2 G
A3 C
F F

1 By omitting its translative part, each element of eD6
3d is mapped on the

corresponding element of the point group D3d ¼
�3m. This mapping also

establishes a one-to-one correspondence between the representations of eD6
3d

and those of D3d ¼
�3m.

2 In Section 1.5.3.3, we shall show that this rule corresponds in the Landau
theory of phase transitions to the general law that the magnetically ordered state
is described by L�i or Mi, which form the basis of one of the irreducible
representations of the paramagnetic space group of the crystal.
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m and the antiferromagnetic one l3 are perpendicular and
jmj � jl3j. This phenomenon is called weak ferromagnetism and
will be discussed in detail in Section 1.5.5.1. Like weak ferro-
magnetism, the symmetry also allows the coexistence of two
orthogonal antiferromagnetic structures A1 and A2. This gives
rise to weakly non-collinear antiferromagnetic structures.

The strongly non-collinear structures are described by another
set of basis vectors for the irreducible representations of the
group ~G. If the magnetic ions l� in the crystal form triangular
planes, one gets instead of (1.5.3.2) the relations for the basis
vectors (see Fig. 1.5.1.3c):

l1 ¼
ffiffiffi

3
p
ðl2 � l1Þ

l2 ¼ l1 þ l2 � l3 ð1:5:3:3Þ

m ¼ l1 þ l2 þ l3:

1.5.3.2. Exchange and magnetic anisotropy energies

It is pertinent to compare the different kinds of interactions
that are responsible for magnetic ordering. In general, all these
interactions are much smaller than the electrostatic interactions
between the atoms that determine the chemical bonds in the
material. Therefore, if a crystal undergoes a transition into a
magnetically ordered state, the deformations of the crystal that
give rise to the change of its crystallographic symmetry are
comparatively small. It means that most of the non-magnetic
properties do not change drastically. As an example, the aniso-
tropic deformation of the crystal that accompanies the transition
into the ordered state (see Section 1.5.9.1) is mostly not larger
than 10�4.

The formation of the ordered magnetic structures is due
mainly to the exchange interaction between the spins S� (and
corresponding magnetic moments l of the atoms or ions). The
expression for the exchange energy can contain the following
terms [see formula (1.5.1.7)]:

S�S�; S�½S�S� �: ð1:5:3:4Þ

The exchange interaction decreases rapidly as the distance
between the atoms rises. Thus, it is usually sufficient to consider
the interaction only between nearest neighbours. The exchange
interaction depends only on the relative alignment of the spin
moments and does not depend on their alignment relative to the
crystal lattice. Therefore, being responsible for the magnetic
ordering in the crystal, it cannot define the direction of the
spontaneous magnetization in ferromagnets or of the anti-
ferromagnetic vector. This direction is determined by the spin–
orbit and magnetic spin–spin interactions, which are often called
relativistic interactions as they are small, of the order of v2=c2,
where v is the velocity of atomic electrons and c is the speed
of light. The relativistic interactions are responsible for the
magnetic anisotropy energy, which depends on the direction of
the magnetic moments of the ions with regard to the crystal
lattice. The value of the exchange energy can be represented by
the effective exchange field He. For a magnetically ordered
crystal with a transition temperature of 100 K, He ’ 1000 kOe ’
108 A m�1. Thus, the external magnetic field hardly changes the
value of the magnetization M or of the antiferromagnetic vector
L; they are conserved quantities to a good approximation. The
effective anisotropy field Ha in cubic crystals is very small:
1–10 Oe ’ 102–103 A m�1. In most non-cubic materials, Ha is not
larger than 1–10 kOe ’ 105–106 A m�1. This means that, by
applying an external magnetic field, we can change only the
direction of M, or sometimes of L, but not their magnitudes.

The magnetic anisotropy energy density Ua can be represented
as an expansion in the powers of the components of the vectors M
or L. The dependence of Ua on the direction of the magnetization
is essential. Therefore, one usually considers the expansion of
the spontaneous magnetization or antiferromagnetic vector in
powers of the unit vector n. The anisotropy energy is invariant
under time reversal. Therefore, the general expression for this
energy has the form

Ua ¼ Kijninj þ Kijk‘ninjnkn‘ þ Kijk‘mnninjnkn‘nmnn; ð1:5:3:5Þ

where Kij, Kijk‘, Kijk‘mn are tensors, the components of which have
the dimension of an energy density. The forms of the tensors
depend on the symmetry of the crystal. There are at most two
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Table 1.5.3.3. Magnetic groups of symmetry in rhombohedral oxides of
trivalent transition-metal ions

Type of
magnetic
structure

Magnetic moments are directed along the axis

x y z

A1 ¼ A E; U2; ~IR; ~�dR E; U2R; ~IR; ~�d E; 2C3; 3U2R; ~IR; 3 ~�d; 2~S6R

A2 ¼ G E; U2R; ~IR; ~�d E; U2; ~IR; ~�dR E; 2C3; 3U2; ~IR; 3 ~�dR; 2~S6R

A3 ¼ C E; U2R; ~I; ~�dR E; U2; ~I; ~�d E; 2C3; 3U2; ~I; 3 ~�d; 2~S6

F ¼ F E; U2; ~I; ~�d E; U2R; ~I; ~�dR E; 2C3; 3U2R; ~I; 3 ~�dR; 2~S6

Table 1.5.3.4. Magnetic point groups in rhombohedral oxides of transition
metals

Type of
magnetic
structure

Magnetic moments are directed along the axis

x y z

A1 ¼ A C2hðC2Þ ¼ 2=m0 C2hðCsÞ ¼ 20=m D3dðC3vÞ ¼
�30m

A2 ¼ G C2hðCsÞ ¼ 20=m C2hðC2Þ ¼ 2=m0 D3dðD3Þ ¼
�30m0

A3 ¼ C C2hðCiÞ ¼ 20=m0 C2h ¼ 2=m D3d ¼
�3m

F ¼ F C2h ¼ 2=m C2hðCiÞ ¼ 20=m0 D3dðS6Þ ¼
�3m0

Table 1.5.3.2. Sign variation of the components of antiferromagnetic and ferromagnetic vectors during transformations of the group eD6
3d in rhombohedral crystals

with four magnetic ions

Vector
components

Elements of symmetry

E 2C3 U1
2 U2

2 U3
2

~I ~�1
d ~�2

d ~�3
d 2~S6

1 �3z 2x 2
ð2Þ
? 2

ð3Þ
?

~�1 cx c
ð2Þ
? c

ð3Þ
? �

~�3

l1x + 0 + 0 0 � � 0 0 0
l1y + 0 � 0 0 � + 0 0 0
l1z + + � � � � + + + �

l2x + 0 � 0 0 � + 0 0 0
l2y + 0 + 0 0 � � 0 0 0
l2z + + + + + � � � � �

l3x + 0 � 0 0 + � 0 0 0
l3y + 0 + 0 0 + + 0 0 0
l3z + + + + + + + + + +

mx + 0 + 0 0 + + 0 0 0
my + 0 � 0 0 + � 0 0 0
mz + + � � � + � � � +
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independent components in Kij. For a uniaxial crystal, the
second-order term in the anisotropy energy expansion is deter-
mined by one anisotropy constant, K. Instead of using the
components of the unit vector n, its direction can be described by
two angles: polar � and azimuthal ’. Correspondingly, the
anisotropy energy for a uniaxial crystal can be written as

Ua ¼ Kðn2
x þ n2

yÞ ¼ K sin2 �: ð1:5:3:6Þ

This relation is equivalent to

Ua ¼ Kð1� n2
zÞ ¼ K � K cos2 �: ð1:5:3:7Þ

The direction of the magnetization vector M in a ferromagnet
or of the antiferromagnetic vector L in an antiferromagnet is
called the direction or the axis of easy magnetization. The crystals
in which this axis is aligned with a threefold, fourfold or sixfold
axis of the magnetic point group are called easy-axis magnets.
The magnetic crystals with the main axis higher than twofold in
the paramagnetic state in which, in the ordered state, L (or M) is
perpendicular to this axis are often called easy-plane magnets.
The anisotropy in this plane is usually extremely small. In this
case, the crystal possesses more than one axis of easy magneti-
zation and the crystal is usually in a multidomain state (see
Section 1.5.4).

If the anisotropy constant K is positive, then the vector n is
aligned along the z axis, and such a magnet is an easy-axis one.
For an easy-plane magnet, K is negative. It is convenient to use
equation (1.5.3.6) for easy-axis magnets and equation (1.5.3.7) for
easy-plane magnets. In the latter case, the quantity K is included
in the isotropic part of the thermodynamic potential �, and
(1.5.3.7) becomes Ua ¼ �K cos2 �. Instead, we shall write Ua ¼

K cos2 � in the following, so that K becomes positive for easy-
plane ferromagnetics as well.

Apart from the second-order term, terms of higher order must
be taken into account. For tetragonal crystals, the symmetry
allows the following invariant terms in the anisotropy energy:

Uað4Þ ¼ K1ðn
2
x þ n2

yÞ þ K2ðn
2
x þ n2

yÞ
2
þ Kxxyyn2

xn2
y

¼ K1 sin2 � þ K2 sin4 � þ K? sin4 � sin2 2’;

ð1:5:3:8Þ

the azimuthal angle ’ is measured from the twofold axis x in the
basal plane and the constant K? determines the anisotropy in the
basal plane.

Trigonal symmetry also allows second- and fourth-order
invariants:

Uað3Þ ¼ K1ðn
2
x þ n2

yÞ þ K2ðn
2
x þ n2

yÞ
2

þ K0?
1
2 nz½ðnx þ inyÞ

3
þ ðnx � inyÞ

3
�

¼ K1 sin2 � þ K2 sin4 � þ K0? cos � sin3 � cos 3’;

ð1:5:3:9Þ

where ’ is measured from the x axis, which is chosen parallel to
one of the twofold axes. For easy-plane magnets and K0?> 0, the
vector n is directed along one of the twofold axes in the basal
plane. If K0? is negative, then n lies in a vertical mirror plane
directed at a small angle to the basal plane. For the complete
solution of this problem, the sixth-order term must be taken into
account. This term is similar to the one that characterizes the
anisotropy of hexagonal crystals. The expression for the latter is
of the following form:

Uað6Þ ¼ K1ðn
2
x þ n2

yÞ þ K2ðn
2
x þ n2

yÞ
2

þ K00?
1
2 ½ðnx þ inyÞ

6
þ ðnx � inyÞ

6
�

¼ K1 sin2 � þ K2 sin4 � þ K00? sin6 � cos 6’;

ð1:5:3:10Þ

where x and ’ have the same meaning as in (1.5.3.9).
The symmetry of cubic crystals does not allow any second-

order terms in the expansion of the anisotropy energy. The
expression for the anisotropy energy of cubic crystals contains
the following invariants:

UaðcubÞ ¼ K1ðn
2
xn2

y þ n2
xn2

z þ n2
yn2

zÞ þ K2n2
xn2

yn2
z: ð1:5:3:11Þ

In considering the anisotropy energy, one has to take into
account spontaneous magnetostriction and magnetoelastic
energy (see Section 1.5.9). This is especially important in cubic
crystals. Any collinear cubic magnet (being brought into a single
domain state) ceases to possess cubic crystallochemical symmetry
as a result of spontaneous magnetostriction. If K1 is positive, the
easy axis is aligned along one of the edges of the cube and the
crystal becomes tetragonal (like Fe). If K1 is negative, the crystal
becomes rhombohedral and can be an easy-axis magnet with
vector n parallel to one of the spatial diagonals (like Ni) or an
easy-plane magnet with n perpendicular to a spatial diagonal. We
shall discuss this topic in more detail in Section 1.5.9.3.

The considerations presented above can be applied to all
crystals belonging in the paramagnetic state to the tetragonal,
trigonal or hexagonal system that become easy-plane magnets in
the ordered state. All of them, including the cubic crystals, may
possess more than one allowed direction of easy magnetization.
In the example considered in the previous section, these direc-
tions can be aligned along the three twofold axes for the struc-
tures Ax

1;Ax
2;Ax

3;Fx and can be parallel to the three mirror planes
for A

y
1;A

y
2;A

y
3;Fy.

It is worth noting that in some applications it is more conve-
nient to use an expansion of the anisotropy energy in terms of
surface spherical harmonics. This problem has been considered in
detail by Birss (1964).

1.5.3.3. The thermodynamic theory of transitions into a magne-
tically ordered state

According to Landau (1937) (see also Landau & Lifshitz,
1951), a phase transition of the second kind can be described by
an order parameter �, which varies smoothly in the neighbour-
hood of the transition temperature Tc. The order parameter
� ¼ 0 when T � Tc and rises continuously as the temperature is
decreased below Tc, but the symmetry of the crystal changes
suddenly. The order parameter can be a scalar, a vector or a
tensor.

Consider a crystal with known space group in the paramagnetic
state. In this section, we show how the Landau theory allows us to
determine the magnetic space groups that are possible after a
second-kind phase transition into an ordered state. The appli-
cation of the Landau theory to the magnetic transitions into
different types of antiferromagnets was made by Dzyaloshinskii
(1957a,c; 1964). In these cases, the order parameter is the
magnetic moment density mðrÞ. To determine the equilibrium
form of this function, it is necessary to find the minimum of the
thermodynamic potential �, which is a functional of mðrÞ. Since
the transition is continuous and mðrÞ ¼ 0 for T � Tc, the value of
mðrÞ must be very small in the neighbourhood below the transi-
tion point. In this region, the thermodynamic potential � will be
expanded into a power series of mðrÞ. To find the proper form of
this expansion, it is convenient to represent mðrÞ as a linear
combination of functions that form bases of the irreducible
representations of the space group of the paramagnetic phase
MG:
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miðrÞ ¼
P

n;�

Mi
n;�’n;�ðrÞ; ð1:5:3:12Þ

where ’n;�ðrÞ are functions that transform under the repre-
sentation n (� is the number of the function in the representa-
tion) and i ¼ x; y; z. In this expansion, the quantities Mi

n;� are
independent of r and transform with respect to i as the compo-
nents of an axial vector. The functions ’n;�ðrÞ are transformed
into combinations of one another by the elements of the group
MG. Instead, these elements can be regarded as transforming the
coefficients Mi

n;� and leaving the functions ’n;� invariant. In this
case, the quantities Mi

n;� transform according to the direct
product of the representation n of MG and the representation
formed by the components of the pseudovector. This repre-
sentation is reducible in the general case. Irreducible repre-
sentations p; q; . . . can be obtained by forming linear
combinations of the Mi

n;�. Let us denote these combinations by
cp;�; cq;�; . . .. These variables can be considered as components of
the order parameter, and the thermodynamic potential can be
expanded into a power series of cp;�. The terms of this expansion
must be invariant under the transformations of the magnetic
space group of the crystal in the paramagnetic state MG. This
group possesses R as a separate element. Therefore the expan-
sion can contain only even terms. For each irreducible repre-
sentation, there is only one invariant of second order – the sum of
the squares. Consequently, retaining only the square terms, the
expansion of the thermodynamic potential � has the form:

�ðTÞ ¼ �0ðTÞ þ
P

p

ApðTÞ
P

�

c2
p;�: ð1:5:3:13Þ

To minimize �, it is necessary to add the terms of the fourth
power. All the coefficients ApðTÞ in the relation (1.5.3.13) depend
on the temperature. At T � Tc all cp;� ¼ 0. This solution corre-
sponds to the minimum of � if all ApðTÞ are positive. The tran-
sition into the ordered state occurs if one of the quantities ApðTÞ
changes its sign. This means that the transition temperature Tc is
the temperature at which one of the coefficients ApðTcÞ ¼ 0. This
coefficient has the form:

ApðTÞ ¼ 	ðT � TcÞ: ð1:5:3:14Þ

Accordingly, the corresponding magnetic structure is defined by
the order parameters cp;� and belongs to the representation p.

The representation of the space group is realized by a set of
functions of the following type:

’k� ðrÞ ¼ uk�
ðrÞ expðik�rÞ; ð1:5:3:15Þ

where the values of the vectors k are confined to the Brillouin
zone in the reciprocal lattice and the function uk�

ðrÞ is periodic in
the real lattice. The irreducible representation defined by the
vector k� contains the functions with all the vectors k� that
belong to the same star. The star is the set of the vectors k�
obtained by applying all the transformations gi of the corre-
sponding point group to any vector of the star (see also Section
1.2.3.3). If we denote it as k1, then the set of the vectors of the star
consists of all inequivalent vectors of the form gik1.

There are three types of transition we have to consider: (1) the
magnetic lattice is commensurate with the crystallographic one
and k 6¼ 0; (2) the magnetic lattice is incommensurate with the
crystallographic one; (3) k ¼ 0 and the magnetic lattice coincides
with the crystallographic lattice. Below we shall discuss in detail
only the first and the third type of transition.

(1) k 6¼ 0.
It is found that the first type of transition occurs if the arms of

the star k� are aligned along specific crystallographic directions
and that its vectors are equal to 1/2, 1/3 or 1/4 of some translation
in the reciprocal lattice (Lifshitz, 1942). Then, the magnetic
structure is described by one of the 22 nontrivial Bravais types of
magnetic lattices shown in Figs. 1.5.2.1–1.5.2.7.

As an example, let us consider a magnetic transition in UO2. In
the paramagnetic state, it is a crystal with a face-centred cubic
structure (space group O5

h ¼ Fm�3m) (for details see Dzya-
loshinskii & Man’ko, 1964; Izyumov & Naish, 1979; Izyumov,
Naish & Petrov, 1979; Izyumov, Naish & Syromiatnikov, 1979;
Barbara et al., 1988). Primitive translations of the crystallographic
lattice are (see Fig. 1.5.3.5):

a1 ¼ ða=2Þð0; 1; 1Þ; a2 ¼ ða=2Þð1; 0; 1Þ; a3 ¼ ða=2Þð1; 1; 0Þ:

ð1:5:3:16Þ

Primitive translations of the reciprocal lattice are:

b1 ¼ ð2�=aÞð�1; 1; 1Þ; b2 ¼ ð2�=aÞð1;�1; 1Þ;

b3 ¼ ð2�=aÞð1; 1;�1Þ: ð1:5:3:17Þ

Let us assume that there is one magnetic ion in the primitive
cell in the position (0, 0, 0) and that the transition takes place
over a three-armed star fK10g (for the definition of the symbols of
the stars see Kovalev, 1987):

k1 ¼ ðb1 þ b2Þ=2 ¼ ð2�=aÞð0; 0; 1Þ

k2 ¼ ðb1 þ b3Þ=2 ¼ ð2�=aÞð0; 1; 0Þ ð1:5:3:18Þ

k3 ¼ ðb2 þ b3Þ=2 ¼ ð2�=aÞð1; 0; 0Þ:

If l1 is the magnetic moment at the site (0, 0, 0), the value of
liðkjÞ at ti ¼ ða=2Þðhi; ki; liÞ may be obtained for each kj with the
help of the following relation:

liðkjÞ ¼ l1 exp½iðkjtiÞ�: ð1:5:3:19Þ

From this relation, it follows that liðkjÞ ¼ �l1 for different
combinations of ti and kj. The signs of the magnetic moments li

at the four sites at the corner and the face centres of the
conventional unit cell are displayed in Table 1.5.3.5.

Table 1.5.3.5 shows that for each arm of the vector star kj, there
exists a linear combination of the four vectors li (i ¼ lattice site)
which is a basis of the representation of one of the arms.
According to Table 1.5.3.5, these linear combinations have the
following forms:
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Fig. 1.5.3.5. The conventional unit cell of UO2. Only the positions of the
magnetic U4+ ions are shown. The vectors a1, a2, a3 form a basis of a primitive
cell of the crystallographic lattice; l1, l2, l3, l4 are the magnetic moments of
the ions belonging to the four magnetic lattices.
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l1 ¼ l1 þ l2 � l3 � l4

l2 ¼ l1 � l2 þ l3 � l4 ð1:5:3:20Þ

l3 ¼ l1 � l2 � l3 þ l4:

None of the vectors l� is a basis of an irreducible representa-
tion of the whole space group O5

h ¼ Fm�3m in the case under
consideration. The basis functions of the irreducible repre-
sentation are formed by linear superposition of the basis func-
tions of each arm. One of these representations, 
3, is a
superposition of the following components of l�: l1x, l2y and l3z.
This corresponds to the following orientations of the magnetic
moments located in different corners of the primitive unit cell:

l1 � ½
�1; �1; �1�; l2 � ½

�1; 1; 1�; l3 � ½1; �1; 1�; l4 � ½1; 1; �1�:

ð1:5:3:21Þ

Thus the magnetic structure of UO2 consists of four primitive
cubic magnetic sublattices Mi inserted into each other. According
to (1.5.3.21), the magnetization vectors of these sublattices Mi are
aligned along the space diagonals of the cubic lattice. This
magnetic structure for UO2 was predicted theoretically by
Dzyaloshinskii & Man’ko (1964) (using the representation
approach in the way discussed above) and established by neutron
scattering by Faber et al. (1975).

This example shows that the Landau theory can solve
complicated problems of phase transitions where the magnetic
lattice does not coincide with the crystallographic one and where
the magnetic structure is strongly non-collinear. Here only a
qualitative analysis has been given; Section 1.5.3.3.1 and Section
1.5.3.3.2 will be devoted to quantitative solutions connected with
phase transitions into an ordered state.

As was discussed in Section 1.5.2, Andreev & Marchenko
(1976, 1980) introduced the concept of exchange magnetic
symmetry. This concept is based on neglecting the relativistic
interactions in comparison with the exchange interaction. In such
an approach, the orientation of the magnetic moments relative to
the crystallographic axis is arbitrary and the crystallographic
transformations act on the magnetic moments not as on vectors
but as on scalars. In the exchange approximation, three magnetic
vectors can be introduced that describe any magnetic structure.
These vectors are mutually orthogonal. All magnetic structures
can be classified into four types. (1) Collinear ferromagnets or
ferrimagnets are described by one ferromagnetic vector M. (2)
Collinear antiferromagnets are described by one anti-
ferromagnetic vector L. (3) Non-collinear ferromagnets are
described by one ferromagnetic vector M and one or two anti-
ferromagnetic vectors L�. (4) Non-collinear antiferromagnets are

described by two or three antiferromagnetic vectors L�. The
Andreev and Marchenko approach describes the magnetic
structure of UO2 considered above by three antiferromagnetic
vectors, which are aligned along [1, 0, 0], [0, 1, 0] and [0, 0, 1],
respectively.

(2) Incommensurate structures (see also Section 1.10.1).
In the second type of transition, k� differs slightly from one of

the rational values (1/2, 1/3, 1/4). Then the magnetic structure is
incommensurate with the crystallographic lattice. Such non-
collinear structures are shown in Fig. 1.5.1.4 (antiferromagnetic
and ferromagnetic helices). A detailed analysis of this problem is
given by Andreev & Marchenko (1976, 1980).

(3) k� ¼ 0.
To the third type belong transitions for which k� ¼ 0. In this

case, the magnetic primitive cell coincides with the crystal-
lographic one and antiferromagnetic ordering is allowed only if
there is more than one magnetic ion in the primitive cell. As
stated above, only this type of ordering allows collinear ferro-
magnetism. Therefore, we shall discuss this type of transition
later in more detail.

Let us consider the phase transition in a uniaxial crystal with
four magnetic ions in the primitive cell, as was done by Dzya-
loshinskii (1957a). Now the average density of the magnetic
moment miðrÞ in (1.5.3.12) is determined by the average values of
the magnetic moments of each ion, l1; l2; l3; l4. In (1.5.3.12),
there is no longer any need to distinguish the coefficients Mi

n� and
the functions ’n;�ðrÞ. Their product Mi

n;�’n;�ðrÞ is now replaced by
the linear combinations of the components of l1; l2; l3; l4

transforming according to the corresponding irreducible repre-
sentation of the point group P of the crystal (the space group of
which is G). To illustrate this, we shall take for G the group
D6

3d ¼ R3c, which was discussed in Section 1.5.3.1. There we
introduced the linear combinations (1.5.3.2) l1; l2, l3;m of the
vectors l1, l2, l3, l4. The components of these linear combina-
tions are basis functions of the irreducible representations of the
corresponding point group D3d ¼

�3m. The characters of the
representations of this group are given in Table 1.5.3.6. It follows
from this table that all z components of the vectors l� and m are
transformed according to different one-dimensional representa-
tions of D3d (i.e. �1; . . . ;�4). Following the rule introduced in
Section 1.5.2.1 [see relation (1.5.2.2)], we established the
magnetic point groups displayed in the last column of Table
1.5.3.6. The symbols for the magnetic structures are given in the
corresponding column. The x, y components are transformed by
two-dimensional representations: mx;my and l3x; l3y are trans-
formed according to the same representation �5; a similar
situation holds for the pairs l1x; l1y and l2x; l2y, which are trans-
formed according to �6. It is obvious that if the magnetic struc-
ture possesses x; y components of the magnetic vectors, the
magnetic point group (which must be a subgroup of D3d) will
contain only four elements of the group D3d: E, C2, I, �?. These
elements form the point group C2h ¼ 2=m. The point group C2h

has four one-dimensional representations, which according to
relation (1.5.2.2) generate the four magnetic point groups listed
in the last column of Table 1.5.3.6. To each of these magnetic
point groups corresponds a definite magnetic structure, which is a
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Table 1.5.3.6. Characters of the irreducible representations of the group D3d ¼
�3m and corresponding magnetic structures

Representation

Magnetic
vector
components

Elements of symmetry

Magnetic
structure

Magnetic
point groupE 2C3 3U2 I 2S6 3�d

�1 l3z 1 1 1 1 1 1 Cz D3d ¼
�3m

�2 mz 1 1 �1 1 1 �1 Fz D3dðS6Þ ¼
�3m0

�3 l1z 1 1 �1 �1 �1 1 Az D3dðC3vÞ ¼
�30m

�4 l2z 1 1 1 �1 �1 �1 Gz D3dðD3Þ ¼
�30m0

�5 l3x my 2 �1 0 2 �1 0 Cx Fy C2hðCiÞ ¼ 20=m0

mx l3y Cy Fx C2h ¼ 2=m
�6 l1x l2y 2 �1 0 �2 1 0 Ax Gy C2hðC2Þ ¼ 2=m0

l2x l1y Ay Gx C2hðCsÞ ¼ 20=m

Table 1.5.3.5. The signs of liðkjÞ for four sites ti of the conventional unit cell
(the corners of a primitive cell)

t1 t2 t3 t4
a(0; 0; 0) ða=2Þ(0; 1; 1) ða=2Þ(1; 0; 1) ða=2Þ(1; 1; 0)

k1 + � � +
k2 + � + �

k3 + + � �



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

mixture of x and y components of l3 and m or l1 and l2. The
symbols of these structures are also listed in the table (by defi-
nition, the twofold axis is aligned along the x axis).

According to the relation (1.5.3.13), the thermodynamic
potential � contains a sum of quadratic terms of basis functions
for each irreducible representation. Thus it contains the following
invariants, which correspond to the one-dimensional repre-
sentations:

A01l2
1z þ A02l2

2z þ A03l2
3z þ B0m2

z: ð1:5:3:22Þ

The invariants formed with the x, y components of the vectors l1,
l2, l3, m, which are basis functions of two-dimensional repre-
sentations, have the following form:

A001ðl
2
1x þ l2

1yÞ þ A002ðl
2
2x þ l2

2yÞ þ A003ðl
2
3x þ l2

3yÞ þ B00ðm2
x þm2

yÞ:

ð1:5:3:23Þ

The thermodynamic potential for any uniaxial crystal
possesses such invariants of second order. For crystals belonging
to the space group D6

3d, it is possible to construct additional
invariants, which are linear combinations of the mixed products
of the x and y components of the pairs of vectors l1, l2 and l3;m
and are transformed according to the same two-dimensional
representations. These invariants have the following form:

l1xl2y � l1yl2x; l3xmy � l3ymx: ð1:5:3:24Þ

These terms are responsible for ‘weakly non-collinear’ structures;
we discuss their properties in Section 1.5.5 and shall not take
them into account now.

Before writing the whole expression of the thermodynamic
potential, let us combine expressions (1.5.3.22) and (1.5.3.23) to
separate the exchange terms from the relativistic ones. This can
be performed in two ways:

A01l2
1z þ A001ðl

2
1x þ l2

1yÞ ¼ ðA1=2Þl21 þ ða1=2Þl2
1z or

A01l2
1z þ A001ðl

2
1x þ l2

1yÞ ¼ ðA1=2Þl21 þ ða1=2Þðl2
1x þ l2

1yÞ:

ð1:5:3:25Þ

Similar rearrangements are performed for l2, l3 and m. Summing
expressions (1.5.3.22) and (1.5.3.23) and taking into account
expression (1.5.3.25), we obtain the final expression for the
thermodynamic potential � limited to terms of second order:

�1 ¼ �0 þ ðA1=2Þl21 þ ðA2=2Þl22 þ ðA3=2Þl23 þ ðB=2Þm2

þ ða1=2Þl2
1z þ ða2=2Þl2

2z þ ða3=2Þl2
3z þ ðb=2Þm2

z:

ð1:5:3:26Þ

In this expression, the coefficients of the terms representing the
exchange interaction are denoted by capital letters. It is mainly
these terms that are responsible for the transition to the ordered
state. The much smaller relativistic terms are responsible for the
orientation of the vectors l� or m. Their coefficients are denoted
by small letters.

To minimize the potential (1.5.3.26), it is necessary to add
terms of the fourth order, which are restricted to the exchange
terms. The total expression for the thermodynamic potential �
will then be

� ¼ �1 þ
1
4

P

�

C�l
4
� þ

1
4C
0m4 þ 1

2

P

�

D�ðl�mÞ
2
þ 1

2

P

�

D0�l
2
�m

2:

ð1:5:3:27Þ

As pointed out above, one of the coefficients A� or B vanishes
at the transition temperature Tc. This coefficient may be
expanded in a series of ðT � TcÞ [see (1.5.3.14)]. At T<Tc, a
ferro- or antiferromagnetic structure will be realized, the type of

which is determined by minimization of the thermodynamic
potential (1.5.3.27).

As examples, we shall consider in the next two sections the
simplest cases, the uniaxial ferromagnet and the uniaxial anti-
ferromagnet. When doing this, we shall not restrict ourselves to a
certain crystallographic structure as in the case above. For the
sake of simplicity, it will be assumed that the primitive cell
contains only two magnetic ions and therefore there is only one
antiferromagnetic vector l. Further, we shall introduce new
variables:

M ¼ ðN=2Þm; L ¼ ðN=2Þl; ð1:5:3:28Þ

where N is the number of magnetic ions per volume unit.

1.5.3.3.1. Uniaxial ferromagnet

The temperature of transition from the paramagnetic to the
ferromagnetic state is called the Curie temperature. The ther-
modynamic treatment of the behaviour of uniaxial ferromagnets
in the neighbourhood of the Curie temperature TC is given below.

In the case of a ferromagnet ðL ¼ 0Þ, the thermodynamic
potential (1.5.3.27) near TC including the magnetic energy
��	0MH is given by (see 1.5.3.25)

~� ¼ �0 þ ðB=2ÞM2 þ ðb=2ÞðM2
x þM2

yÞ þ ðC=4ÞM4 � �	0MH;

ð1:5:3:29Þ

where ~� is used to designate the thermodynamic potential in
variables p;T;H [instead of �ðp;T;MÞ]. The equilibrium value
of the magnetization M is found by minimizing the thermo-
dynamic potential ~�.

First consider the ferromagnet in the absence of the external
field ðH ¼ 0Þ. The system of equations @ ~�=@M ¼ 0 has three
solutions:

ðIÞ Mx ¼ My ¼ Mz ¼ 0 ð1:5:3:30Þ

ðIIÞ Mz ¼ 0; M2
x þM2

y ¼ M2
? ¼ �

Bþ b

C
ð1:5:3:31Þ

ðIIIÞ Mx ¼ My ¼ 0; M2
z ¼ �

B

C
: ð1:5:3:32Þ

In the whole range of temperatures T>TC when B> 0, the
minimum of the potential is determined by solution (I) (i.e.
absence of a spontaneous magnetization). The realization of the
second or third state depends on the sign of the coefficient b. If
b> 0, then the third state is realized, the magnetization M being
directed along the axis. In this case, the transition from the
paramagnetic into the ferromagnetic state will take place at
TC ¼ T0 (when B ¼ 0). If b< 0, the magnetization is directed
perpendicular to the axis. In this case, the Curie temperature is
TC ¼ T0 � b=	 (when Bþ b ¼ 0). In the absence of a magnetic
field, the difference between the two values of TC has no physical
meaning, since it only means another value of the coefficient B
[see (1.5.3.25)]. In a magnetic field, both temperatures may be
determined experimentally, i.e. when B becomes zero and when
Bþ b becomes zero.

If a magnetic field H is applied parallel to the z axis and b> 0,
the minimization of the thermodynamic potential ~� leads to

H=M ¼ CM2 þ B: ð1:5:3:33Þ

This relation has been verified in many experiments and the
corresponding graphical representations are known in the
literature as Arrott–Belov–Kouvel plots (see Kouvel & Fisher,
1964). Putting B ¼ 	ðT � TCÞ according to (1.5.3.14), equations
(1.5.3.32) and (1.5.3.33) may be used to derive expressions for the
initial magnetic susceptibilities (for H ! 0):
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�0 ¼
1

2	ðTC � TÞ
� ; T<TC; ð1:5:3:34Þ

�0 ¼
1

	ðT � TCÞ
� ; T>TC; ð1:5:3:35Þ

where � ¼ 1.
The Landau theory of phase transitions does not take account

of fluctuations of the order parameter. It gives qualitative
predictions of all the possible magnetic structures that are
allowed for a given crystal if it undergoes a second-order tran-
sition. The theory also explains which of the coefficients in the
expression for the thermodynamic potential is responsible for the
corresponding magnetic structure. It describes also quantitative
relations for the magnetic properties of the material if

1
 ðT � TCÞ=TC 
 TCB2=b�3; ð1:5:3:36Þ

where � is the coefficient in the term which describes the gradient
energy. In this chapter, we shall not discuss the behaviour of the
material in the fluctuation region. It should be pointed out that, in
this region, � in relations (1.5.3.34) and (1.5.3.35) depends on the
dimensionality of the structure n and equals 1.24 for n ¼ 1, 1.31
for n ¼ 2 and 1.39 for n ¼ 3. Similar considerations are relevant
to the relations (1.5.3.31) and (1.5.3.32), which describe the
temperature dependence of spontaneous magnetization.

The relations (1.5.3.31) and (1.5.3.32) describe the behaviour
of the ferromagnet in the ‘saturated’ state when the applied
magnetic field is strong enough to destroy the domain structure.
The problem of the domains will be discussed later (see Section
1.5.4).

The transition from the paramagnetic to the ferromagnetic
state is a second-order transition, provided that there is no
magnetic field. In the presence of a magnetic field that is parallel
to the easy axis of magnetization, the magnetic symmetry of the
crystal is the same (Mz 6¼ 0) both above and below TC. From the
point of view of symmetry, no transition occurs in this case.

1.5.3.3.2. Uniaxial antiferromagnet

Now let us proceed to the uniaxial antiferromagnet with two
ions in the primitive cell. The thermodynamic potential ~� for
such an antiferromagnet is given in accordance with (1.5.3.26)
and (1.5.3.27) by (Landau, 1933)

~� ¼ �0 þ ðA=2ÞL2 þ ðB=2ÞM2 þ ða=2ÞðL2
x þ L2

yÞ

þ ðb=2ÞðM2
x þM2

yÞ þ ðC=4ÞL4 þ ðD=2ÞðLMÞ2

þ ðD0=2ÞL2M2 � �	0MH: ð1:5:3:37Þ

If the magnetic field is absent ðH ¼ 0Þ, then M ¼ 0 because B,
D and D0 > 0. Then three possible magnetic states are obtained
by minimizing the potential with respect to L only:

ðIÞ Lx ¼ Ly ¼ Lz ¼ 0 ð1:5:3:38Þ

ðIIÞ Lz ¼ 0; L2
x þ L2

y ¼ L2
? ¼ �

Aþ a

C
ð1:5:3:39Þ

ðIIIÞ Lx ¼ Ly ¼ 0; L2
z ¼ �

A

C
: ð1:5:3:40Þ

When a< 0, state (II) with Lz ¼ 0 is thermodynamically stable.
When a> 0, state (III) is stable and the antiferromagnetic vector
is directed along the axis. This means that the term with the
coefficient a is responsible for the anisotropy of the uniaxial
antiferromagnet. We introduce the effective anisotropy field:

Ha ¼ aL ¼ 2aM0; ð1:5:3:41Þ

where M0 is the sublattice magnetization.

Formulas (1.5.3.39) and (1.5.3.14) in the form A ¼ 	ðT � TcÞ

yield the expression for the temperature dependence of the
sublattice magnetization:

L2 ¼ ð	=CÞðTN � TÞ; ð1:5:3:42Þ

where TN is the Néel temperature. The assertions relating to
formulas (1.5.3.34) and (1.5.3.35) concerning the fluctuation
region are also valid for the temperature dependence of the
sublattice magnetization.

The minimization of the potential ~� with respect to M for
given L 6¼ 0 when H 6¼ 0 yields the following relation for the
magnetization:

M ¼ �?H� ð�? � �kÞðqHÞq; ð1:5:3:43Þ

where q ¼ L=jLj. Thus the magnetization of an antiferromagnet
is linear with the magnetic field, as for a paramagnet, if the
magnetic field is not too strong. The main difference is in the
anisotropy and temperature dependence of the susceptibility. The
parallel susceptibility �k decreases when the temperature is
lowered, and �? does not depend on temperature (�? ¼ 1=B)
(see Fig. 1.5.3.6). The coefficient B belongs to the exchange term
and defines the effective exchange field

He ¼
1
2BL ¼ BM0: ð1:5:3:44Þ

As seen from Fig. 1.5.3.6, �?>�k. Therefore, when the
magnetic field applied parallel to the axis of a uniaxial anti-
ferromagnet reaches the critical value

H2
c1 ¼ aL2=ð�? � �kÞ ’ aBL2

0 ¼ 2HaHe ð1:5:3:45Þ

(L0 is the value of L at T ¼ 0), a flopping of the sublattices from
the direction along the axis to some direction in the plane
perpendicular to the axis occurs. In this spin-flop transition
(which is a first-order transition into a new magnetic structure),
the magnetization jumps as shown in Fig. 1.5.3.7.

A second-order transition into a saturated paramagnetic state
takes place in a much stronger magnetic field Hc2 ¼ 2He. This
transition is called a spin-flip transition. Fig. 1.5.3.7 shows the
magnetic field dependence of the magnetization of a uniaxial
antiferromagnet. Fig. 1.5.3.8 shows the temperature dependence
of both critical fields.

The quantitative behaviour of the critical magnetic fields in the
neighbourhood of TN for both directions of the magnetic field
(H k Oz and H ? Oz) can be determined from the theory of
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Fig. 1.5.3.6. Temperature dependence of the mass susceptibility �g for a
uniaxial antiferromagnet along (�k) and perpendicular (�?) to the axis of
antiferromagnetism (see Foner, 1963). �g is expressed in Gaussian units; the
corresponding SI values are �g

SI = 4� � 10�3 �g
G.
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second-order phase transitions starting from the thermodynamic
potential ~� and taking into account that L is small and DL2 � B
close to TN.

In the presence of the magnetic field H ? Oz, L is parallel to
Oz, LM ¼ 0, the coefficient A at L2 is replaced by Aþ 2D0H2=B2

and the latter is zero at the new transition point. The critical field
is given by the relation

H2
c2 ¼ ð	B2=2D0ÞðTN � TÞ; H ? Oz: ð1:5:3:46Þ

If the field is applied parallel to the z axis, then L remains
parallel to Oz if H<Hc1 (Hc1 ’ aB2=D in the neighbourhood of
TN). Therefore,

H2
c2 ¼

	B2

2ðDþD0Þ
ðTN � TÞ; H k Oz; H<Hc1: ð1:5:3:47Þ

If H > Hc1, L becomes perpendicular to the z axis and the
anisotropy term has to be taken into account:

H2
c2 ¼

	B2

2D0
ðTN � T � a=	Þ; H k Oz; H > Hc1: ð1:5:3:48Þ

Formulas (1.5.3.46)–(1.5.3.48) show that the transition
temperature is reduced by applying the magnetic field. The
displacement of the transition point is directly proportional to the
square of the applied field. Fig. 1.5.3.9 shows the phase diagram
of an antiferromagnet in the neighbourhood of TN. Unlike
ferromagnets, antiferromagnets maintain the second-order phase
transition when a magnetic field is applied because the symmetry

of the crystal in the antiferromagnetic state differs essentially
from that in the paramagnetic state also if the crystal is placed
into a magnetic field.

Formula (1.5.3.43) describes the magnetization process only in
easy-axis antiferromagnets. For easy-plane antiferromagnets, the
anisotropy in the plane is usually extremely small and the anti-
ferromagnetic vector rotates freely in the basic plane. Therefore,
for any direction of the magnetic field, the vector L becomes
aligned perpendicular to the applied magnetic field. Corre-
spondingly the magnetization becomes

M ¼ �zHzẑþ �?H?x̂; ð1:5:3:49Þ

where ẑ and x̂ are unit vectors parallel and perpendicular to the
axis.

1.5.4. Domain structure

1.5.4.1. 180� domains

Neither symmetry nor energy considerations can determine
the alignment of the magnetization vector n in a non-chiral easy-
axis magnet (of ferro- or antiferromagnetic type). The vector n
may be aligned parallel or antiparallel to the positive direction of
the z axis. Therefore, specimens of any magnet are usually split
into separate regions, called domains. In each domain of an easy-
axis magnet, the vector n has one of its two possible directions.
Such domains are called 180� domains. Adjacent domains are
separated by a domain wall, in which the magnetic moments are
no longer strictly parallel (or antiparallel). As a result of this,
both the exchange and the anisotropy energy rise inside the
volume of the domain wall.

In ferromagnets (and ferrimagnets), the gain in the exchange
and anisotropy energy in a multidomain sample is compensated
by the loss in the magnetostatic energy. The existence of the
domain structure is responsible for the behaviour of a ferro-
magnet in an applied magnetic field. There are two kinds of
magnetization processes that one has to distinguish: the displa-
cement of the domain walls and the rotation of the spontaneous
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Fig. 1.5.3.8. Magnetic phase diagram for a uniaxial antiferromagnet in a
magnetic field applied parallel to the axis. (1) The line of spin-flop transition
ðHc1Þ; (2) the line of spin-flip transition ðHc2Þ; P, paramagnetic phase; AFM,
easy-axis antiferromagnetic phase; SF, spin-flop phase; BP, bicritical point.

Fig. 1.5.3.9. Phase diagram for a uniaxial antiferromagnet in the proximity of
TN , calculated for MnCl2�4H2O. Experimental data are taken from Gijsman
et al. (1959). The ordinate value 100 corresponds to H = 10 kOe, i.e. B =
10 kG = 1 T.

Fig. 1.5.3.7. Dependence of the relative magnetization M=Mmax on the
magnetic field at T ¼ 0. The dashed line corresponds to H ? Oz, the full line
to H k Oz. Hc1 is the field of spin-flop, Hc2 is the field of spin-flip.
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