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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

(i) From the x axis to the optic axis, ¢’ and e are given by
(1.7.3.11) and (1.7.3.12) with ¢ = 0. The walk-off is relative to the
extraordinary wave and is calculated from (1.7.3.13) with n, = n,
and n, =n,.

(ii) From the optic axis to the z axis, the vibration plane of the
ordinary and extraordinary waves corresponds respectively to a
rotation of 7/2 of the vibration plane of the extraordinary and
ordinary waves for a propagation in the areas of the principal
planes of opposite sign; the extraordinary electric field vector is
given by (1.7.3.12) with ¢ = 0, —p~ (¢, w) for the positive class
and 40" (¢, ®) for the negative class, and the ordinary electric
field vector is out of phase by = in relation to (1.7.3.11), that is

=0 ¢d=-1 e =0. (1.7.3.17)

y
The extraordinary walk-off angle is given by (1.7.3.13) with
n, =n, and n, = n,.
The m/2 rotation on either side of the optic axes is well
observed during internal conical refraction (Feve et al., 1994).
Note that for a biaxial crystal, the walk-off angles are all nil
only for a propagation along the principal axes.

1.7.3.1.4.2. Propagation out of the principal planes

It is impossible to define ordinary and extraordinary waves out
of the principal planes of a biaxial crystal: according to (1.7.3.6)
and (1.7.3.9), e" and e~ have a nonzero projection on the z axis.
According to these relations, it appears that e* and e are not
perpendicular, so relation (1.7.3.10) is never verified. The walk-
off angles o and p~ are nonzero, different, and can be calculated
from the electric field vectors:

pi(gv @, CL)) =¢€ arccos[ei(Q, @, a)) : u(09 Y, CL))] - 87[/2
(1.7.3.18)

e = +1 or —1 for a positive or a negative optic sign, respectively.

1.7.3.2. Equations of propagation of three-wave and four-wave
interactions

1.7.3.2.1. Coupled electric fields amplitudes equations

The nonlinear crystals considered here are homogeneous,
lossless, non-conducting, without optical activity, non-magnetic
and are optically anisotropic. The nonlinear regime allows
interactions between y waves with different circular frequencies
w;,i=1,...,y. The Fourier component of the polarization
vector at ; is P(w;) = g,xV(w;)E(w;) + PV (w,), where PV (w,)
is the nonlinear polarization corresponding to the orders of the
power series greater than 1 defined in Section 1.7.2.

Thus the propagation equation of each interacting wave w; is
(Bloembergen, 1965)

VxVxE(w,) = (0} /c?)e(w,)E(w;) + ol PV (w;).  (1.7.3.19)

The y propagation equations are coupled by P¥:(w,):
(1) for a three-wave interaction, y = 3,
PM () = P(2)(a)1) = EOX(Z)(QH = w; — ) - E(w3) @ E(w,),
PM (o) = P(z)(wz) = SOX(Z)(wz = w; — ) - E(03) ® E* (),
PNL(CU3) = P(z)(w3) = '90)((2)((1)3 = w; + »,) - E(0)) ® E*(w,);

(2) for a four-wave interaction

PNL(wl) = P(3)(a)1) = 80X(3)(a)1 = w, — 0, — ;)
E(0,) ® E*(0,) @ E*(w;),
PNL(“)z) = P(3)(w2) = SOX(3)(CU2 =w, — 0] — ;)
E(wy) @ E*(0;) ® E*(w3),

Copyright © 2013 International Union of Crystallography

PM(wy) = P(3)(a)3) = 80X(3)(603 =0, —w — )
-E(0,) ® E* () ® E*(w,)

PY(w,) = P () = g X, = o) + 0, + wy)
‘E(0;) ® E(0,) ® E(w;).

The complex conjugates E*(w;) come from the relation
E*(0;) = E(—w)).

We consider the plane wave, (1.7.3.3), as a solution of
(1.7.3.19), and we assume that all the interacting waves propagate
in the same direction Z. Each linearly polarized plane wave
corresponds to an eigen mode E* or E™ defined above. For the
usual case of beams with a finite transversal profile and when Z is
along a direction where the double-refraction angles can be
nonzero, i.e. out of the principal axes of the index surface, it is
necessary to specify a frame for each interacting wave in order to
calculate the corresponding powers as a function of Z: the
coordinates linked to the wave at w; are written (X, Y;, Z), which
can be relative to the mode (+) or (—). The systems are then
linked by the double-refraction angles p: according to Fig. 1.7.3.1,
we have X" = X;" + Ztan[p" () — p"(w)], Y;" = Y for two
waves (+) with ,0+(a)) > pH (@), and X = X Y‘ YT +
Ztan[p™(w) — p (a))] for two waves (— ) with p (a)) >0 (a))

The presence of PV(w,) in equations (1.7.3. 19) leads to a
variation of the y amplitudes E(w;) with Z. In order to establish
the equations of evolution of the wave amplitudes, we assume
that their variations are small over one wavelength A;, which is
usually true. Thus we can state

8E(a) Y, Z) ‘

< |E(w, X, Y;, Z)| or

o
'BZE(a)i,

0z

Yo 2
2 Iz

| PE€ Xi Yo Z>'
(1.7.3.20)

This is called the slowly varying envelope approximation.
Stating (1.7.3.20), the wave equation (1.7.3.19) for a forward
propagation of a plane wave leads to

E(w;, X, Y, Z) . w?
0z = JHo 2k(w;) cos? p(w;)
x expl—jk(®)Z].

e(w,) P(w;, X,, Y., Z)

(1.7.3.21)

We choose the optical frame (x, y, z) for the calculation of all the
scalar products e(w,) - PV-(w,), the electric susceptibility tensors
being known in this frame.

For a three-wave interaction, (1.7.3.21) leads to
0E\(X,, Y, 2) .
]5721 =K [el : SOX(Z)(CUI =w;— ) e ® ez]

x Ey(X;, Y;, Z2)E5(X,, Y,, Z) exp(jAkZ)
AE,(X,, Y, Z) .
2;722 :lkz[ez : EOX(Z)(wz =w;—w)- ¢ ® 91]

x E5(X3, Ys, 2)E{(X,, Yy, Z) exp(JAKZ)

0Ey(X5, Y3, Z) .
— e i [ey g x (@ = 0 + @) - e @

0Z
x E\(X,, Yy, Z)Ey(X,, Y, Z) exp(—jAkZ),
(1.7.3.22)
with e, = e(w), E(X,Y,Z)= Ew,X,Y,Z), k=
(1, ,)/[2k(w)cos plw)] and Ak = k(w;) — [k(o)) + k(@,)],
called the phase mismatch. We take by convention

W <, (<w,).
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1.7. NONLINEAR OPTICAL PROPERTIES

If ABDP relations, defined in Section 1.7.2.2.1, are verified,
then the three tensorial contractions in equations (1.7.3.22) are
equal to the same quantity, which we write g, where x.; is
called the effective coefficient:

2
Xﬁfz =€ X(z)(a)1

2
:e2~x()(a)2:w3—a)1)~e3®e1

=¢; X0y =0 + ) - ¢, ®e,. (1.7.3.23)

The same considerations lead to the same kind of equations for a

four-wave interaction:

0E(X,, Y, 2)
0Z

. 3
= ]K180X(312E4(X4s Yy, 2)E5(X,, ), Z)

x E3(X;, Y3, Z) exp(jAKZ)
IE, (X5, Y5 Z) .
—E T = et Xa EXy, Yi, DE(X,, Y1, 2)

x E3(X3, Y5, Z)exp(jAkZ)
AEL(X;, Y5, Z) _ )
% = jisea XD E(X,, Y, 2)EN(X,, Yy, Z)

x E3(X,, Y,, Z)exp(jAkZ)
OE(X,, Y, Z) . :
SR et EX Yy D)X Y, 2)

x Ey(X;, Y3, Z) exp(—jAkZ).

(1.7.3.24)

The conventions of notation are the same as previously and the
phase mismatch is Ak = k(w,) — [k(w,) + k(w,) + k(w;)]. The
effective coefficient is

(©)

Xt =e XNy =0, —0, —w;) ¢, Qe, Ve,
= XN, =0, —w, —w;)-¢,0e ®e
:e3')((3)(a)3 =0 —w) e Qe Qe
=e, (Vg =0+ 0, + ;) ¢, Qe, Qe
(1.7.3.25)
Expressions (1.7.3.23) for Xizfz and (1.7.3.25) for X(jfg can
be condensed by introducing adequate third- and
fourth-rank tensors to be contracted, respectively, with (3?((2)

and x®. For example, 2 =x@ .e,Q¢ ®e, or xO =
x? e, ®e, ®e, ® e;, and similar expressions. By substituting
(1.7.3.8) in (1.7.3.22), we obtain the derivatives of Manley—Rowe
relations (1.7.2.40) ON(ws, Z)/0Z = —dN(wy, Z2)/0Z (k= 1,2)
for a three-wave mixing, where N(w;, Z) is the Z photon flow.
Identically with (1.7.3.24), we have 0N(w,,Z)/dZ =
—IN(wy, Z2)/3Z (k =1, 2, 3) for a four-wave mixing.

In the general case, the nonlinear polarization wave and
the generated wave travel at different phase velocities,
(0 + w,)/[k(w,) + k(w,)] and w,/[k(w,)], respectively, because
of the frequency dispersion of the refractive indices in the crystal.
Then the work per unit time W(w;), given in (1.7.2.39), which is
done on the generated wave E(w;, Z) by the nonlinear polar-

Table 1.7.3.1. Correspondence between the phase-matching relations, the configurations of polarization and
the types according to the sum- and difference-frequency generation processes SFG (w; = w, + w,), DFG

(0, = w3 — w,) and DFG (0, = w; — ;)

e* are the unit electric field vectors relative to the refractive indices n* in the phase-matching direction

(Boulanger & Marnier, 1991).

ization PV (w,, Z), alternates in sign for each phase shift of 7

during the Z-propagation, which leads to a reversal of the energy
flow (Bloembergen, 1965). The length leading to the phase shift
of 7 is called the coherence length, L, = 7/ Ak, where Ak is the
phase mismatch given by (1.7.3.22) or (1.7.3.24).

1.7.3.2.2. Phase matching

The transfer of energy between the waves is maximum for
Ak = 0, which defines phase matching: the energy flow does not
alternate in sign and the generated field grows continuously. Note
that a condition relative to the phases ®(w;, Z) also exists: the
work of PM(w;, Z) on E(w;, Z) is maximum if these two waves are
7/2 out of phase, that is to say if AkZ + AD(Z) = n/2, where
AD(Z) = O(ws, Z) — [P(wy, Z) + P(w,, Z)]; thus in the case
of phase matching, the phase relation is ®(w;, Z) =
d(w,, Z) + O(w,, Z) + /2 (Armstrong et al, 1962). The
complete initial phase matching is necessarily achieved when at
least one wave among all the interacting waves is not incident but
is generated inside the nonlinear crystal: in this case, its initial
phase is locked on the good one. Phase matching is usually
realized by the matching of the refractive indices using birefrin-
gence of anisotropic media as it is studied here. From the point of
view of the quantum theory of light, the phase matching of the
waves corresponds to the total photon-momentum conservation
ie.

yil hk(w,;) = hk(w,) (1.7.3.26)

with y = 3 for a three-photon interaction and y = 4 for a four-
photon interaction.

According to (1.7.3.4), the phase-matching condition (1.7.3.26)
is expressed as a function of the refractive indices in the direction
of propagation considered (6, ¢); for an interaction where the y
wavevectors are collinear, it is written

y—1
Z; wn(w;, 0, ) = w,n(w,, 0, p) (1.7.3.27)

with

y—1
w; = (,()y.
1

(1.7.3.28)

=

(1.7.3.28) is the relation of the energy conservation.

The efficiency of a nonlinear crystal directly depends on the
existence of phase-matching directions. We shall see by consid-
ering in detail the effective coefficient that phase matching is a
necessary but insufficient condition for the best expression of the
nonlinear optical properties.

In an hypothetical non-dispersive medium [dn(w)/dw = 0],
(1.7.3.27) is always verified for each of the eigen refractive indices
n* or n7; then any direction of propagation is a phase-matching
direction. In a dispersive medium, phase matching can be
achieved only if the direction of propagation has a birefringence
which compensates the dispersion. Except for a propagation
along the optic axis, there are two possible values, n* and n™
given by (1.7.3.6), for each of the three or
four refractive indices involved in the
phase-matching relations, that is to say 2°
or 2% possible combinations of refractive
indices for a three-wave or a four-wave
process, respectively.

. — . - For a three-wave process, only three
Configurations of polarization Types of interaction . . 3
) ) combinations among the 2° are compa-
Phase-matching relations w3 o W, SFG (ws) DFG (wy) DFG (w,) tible with the dispersion in frequency
wyny = oy = wyny e e e’ I I 11 (1.7.3.7) and with the momentum and
@alts = Ol = Dofty e et € 1 1 ! energy conservations (1.7.3.27) and
W3N3 = wn] = w,n, e e e III I I

(1.7.3.28). Thus the phase matching of a
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES
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Fig. 1.7.3.4. Index surface sections in a plane containing the optic axis z of a
negative uniaxial crystal allowing collinear type-I phase matching for SFG
(03 = 0, + @,), y =3, or for SFG (0, = 0, + 0, + @3), ¥ = 4. uby; is the
corresponding phase-matching direction.

three-wave interaction is allowed for three configurations of
polarization given in Table 1.7.3.1.

The designation of the type of phase matching, I, IT or III, is
defined according to the polarization states at the frequencies
which are added or subtracted. Type I characterizes interactions
for which these two waves are identically polarized; the two
corresponding polarizations are different for types II and III.
Note that each phase-matching relation corresponds to one sum-
frequency generation SFG (w; = w; + w,) and two difference-
frequency generation processes, DFG (o, = w; — w,) and DFG
(w, = wy; — w,). Types II and I1I are equivalent for SHG because
W, = w,.

For a four-wave process, only seven combinations of refractive
indices allow phase matching in the case of normal dispersion;
they are given in Table 1.7.3.2 with the corresponding config-
urations of polarization and types of SFG and DFG.

The convention of designation of the types is the same as for
three-wave interactions for the situations where one polarization
state is different from the three others, leading to the types I, II,
IIT and IV. The criterion corresponding to type I cannot be
applied to the three other phase-matching relations where two
waves have the same polarization state, different from the two
others. In this case, it is convenient to refer to each phase-
matching relation by the same roman numeral, but with a
different index: V', VI' and VII', with the index i=1,2,3,4
corresponding to the index of the frequency generated by the
SFG or DFG. For THG (v, = w, = ws), types II, III and IV are
equivalent, and so are types V*, VI* and VII*.

The index surface allows the geometrical determination of the
phase-matching directions, which depend on the relative ellipti-
city of the internal (—) and external (+) sheets divided by the
corresponding wavelengths: according to Tables 1.7.3.1 and
1.7.3.2 the directions are given by the intersection of the internal
sheet of the lowest wavelength [n7 (4, 6, )]/(A,) with a linear
combination of the internal and external sheets at the other
frequencies 3 /- [n*(X,, 6, 9)]/(%,). The existence and loci of
these intersections depend on specific inequalities between the
principal refractive indices at the different wavelengths. Note
that independently of phase-matching considerations, normal
dispersion and energy conservation impose f;l[nu()\i)]/()»i)
<[n,(x)1/(X)) with a =x,y, z.

1.7.3.2.2.1. Cubic crystals

There is no possibility of collinear phase matching in a
dispersive cubic crystal because of the absence of birefringence.
In a hypothetical non-dispersive anaxial crystal, the 2° three-
wave and 2* four-wave phase-matching configurations would be
allowed in any direction of propagation.

1.7.3.2.2.2. Uniaxial crystals

The configurations of polarization in terms of ordinary and
extraordinary waves depend on the optic sign of the phase-
matching direction with the convention given in Section 1.7.3.1:
Tables 1.7.3.1 and 1.7.3.2 must be read by substituting (+, —) by
(e, 0) for a positive crystal and by (o, e) for a negative one.

Because of the symmetry of the index surface, all the phase-
matching directions for a given type describe a cone with the
optic axis as a revolution axis. Note that the previous comment on
the anaxial class is valid for a propagation along the optic axis
(no = ne)'

Fig. 1.7.3.4 shows the example of negative uniaxial crystals
(n, > n,) like g-BaB,0, (BBO) and KH,PO, (KDP).

From Fig. 1.7.3.4, it clearly appears that the intersection of the
sheets is possible only if (ney)/()»y) < f;l(noi)/()»l—)
[< (noy) /()] with y = 3 for a three-wave process and y = 4 for a
four-wave one. The same considerations can be made for the
positive sign and for all the other types of phase matching. There
are different situations of inequalities allowing zero, one or
several types: Table 1.7.3.3 gives the five possible situations for
the three-wave interactions and Table 1.7.3.4 the 19 situations for
the four-wave processes.

1.7.3.2.2.3. Biaxial crystals

The situation of biaxial crystals is more complicated, because
the two sheets that must intersect are both elliptical in several
cases. For a given interaction, all the phase-matching directions
generate a complicated cone which joins two directions in the
principal planes; the possible loci a, b, ¢, d are shown on the
stereographic projection given in Fig. 1.7.3.5.

The basic inequalities of normal dispersion (1.7.3.7) forbid
collinear phase matching for all the directions of propagation
located between two optic axes at the two frequencies concerned.

Table 1.7.3.2. Correspondence between the phase-matching relations, the configurations of polarization and the types according to SFG (0, = w, + 0, + w;),
DFG (v, = w, — w, — w3), DFG (0, = w, — w; — ;) and DFG (w; = w, — w; — w,) (Boulanger et al., 1993)

Configurations of polarization Types of interaction
Phase-matching relations [on o w, w3 SFG (w,) DFG (wy) DFG (w,) DFG (ws3)
wny = oy + o,ni + o;nt e e" e’ e’ I 1I 111 v
wyny = ony + wyn; + wsnd e e e e’ 1I 1 v 1
wny = ony + wyny + wsny e e e’ e III v I I
wny = onf + wny + wzny e e’ e e v I 11 v
wyny = wny + w,ng + wyni e e e’ e’ v v! v? v?
wny = onf + wyny + wzng e e’ e e’ vI* v VI A&
wny = ony + w,ni + w;ny e e e e VI viIr VII? vIP
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1.7. NONLINEAR OPTICAL PROPERTIES
Table 1.7.3.3. Classes of refractive-index inequalities for collinear phase matching of three-wave interactions in positive and negative uniaxial crystals

Types I, II and III refer to SFG; the types of the corresponding DFG are given in Table 1.7.3.1 (Feve et al., 1993).

Positive sign (n, > n,) Negative sign (n, > n,) Types of SFG
Moz _ Mot | Mo Mt | Tn Mot | M Moy | Moy _Mes L I, I
PV VL VW PRV VR VN
E @ @ ol + e n_ + < E e + o2 L
AMoA A A Az M Az A3 Al )Lz
Ny, ”03 Ny Ny ”e% Ny I I
A + Az A3 )Ll ot A, Al ot A, A; )L + Az
Mot | M Met | Mop Moz _ Ty | o fot | Mo M | Nop T Moy | Mo I
NN A A Ay A Ay AN A A Ay A A
Mo | Mo M3 o M2 _Me None
AMA A AMA A

Table 1.7.3.4. Classes of refractive-index inequalities for collinear phase matching of four-wave interactions in positive (n, = n,, n, = n,) and negative
(n, = n,, n, = n,) uniaxial crystals with (n,,/*s) <N, /1) + (n,/%,) + (n5/23)

If this inequality is not verified, no phase matching is allowed. The types of phase matching refer to SFG; the types of the corresponding DFG are given in Table 1.7.3.2
(Feve, 1994).

Positive sign (n, > n,) Negative sign (n, > n,) Types of SFG
Ny Mg | Mz Mgy | My | Mgy My My Mgz Mg I
PV W VL VL W VA VLA W
Mgy | Mgy | Mp3 Ny +”ﬂ+”as Ny My L v
Moo ATA A A Ay A A )L3
M Mo M e Mo Ma e _Ma | M Ma Lvr
MooA AT A Ay A Ay A Ay A
Ny | Mgz Ny Mpy Mg | Ny | My L, virt
7+7+ erer— <=< +—=+——
MooA A A A A Ay L
n n n n n n n n n n I, v4, vI*
a g aZJ’_ﬁ Npy a /;2+_ b1 Pon  Pea | Mas _ Tloa
AA A Ay AA A N A )»; AA A Ay
Moy M e M I I, V4, vI*
Ao M A A
Rgp | My | Mgz Mpy Ng | Ngp Mg Ny Ny Ny Mp1 | Mgy | Mz Ny L v, virt
S Ay Mood AT A Ay A A d A Ay
Npy nhl T Ny +”b3 I, 111, v, vIrt
Ay Al Ay A
My Mo M Mo M M Mo M Mo s Ny M My M L VI, viIrt
UV Ve U VL VL WA VR T PRV VW
Mo Mo M M L IV, VI, vir*
Ay Mood A
n Ny N ny, n n n, n Ny N n, n, n 1, V4, VI4, virt
My 7+7+ﬁ ¢11+12+73A+7+7 b1+12+a3 b1+(12+l3 My Moo T s
Ay A A A A MooA A MoA Mood A A A A Ay
Mgy | My | Mz Ty + +"b% Mpy My My Mgy | LI V*, VI, VIT
U VRV T VO W U W T
Mg My My My Ty M My My Mp M | LTIL VA VI vIF
—al |, Th2 3 bl b2y a3 o Tbd 7By T2 | T3
U VR VL VL VR Ve VI VIR VL
My + Mgy | Mp3 Ny | Ny ”h4 +”Izz+”/;3 L1V, V¥4, VI*, vII*
MooA o AT A A A3 )LA A A A
M My My M Tan | M Mis M M Mo L I, 111, V*, VI*, VII*
AA A Ay Moo AT A A Ay
n, n n, Ry Mz My My, L IL, IV, V4, VI*, VII*
i+7+ﬁ b4 7+£+13 11+zz+7
Mo oAy A Ay R P A S P N
My My Mgz Mpy Mgy +”bz +”b3 My | Mg | My | LILIV, V4, VI, vir
by TR T Thd Tl b2 T3 TBL T2y b3
UV W VR VR VL VAL VLA VL
o M T Mo T Mo T M T M| Al
T VR VL W VL VL WL VL VL W
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

Table 1.7.3.5. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for three-

wave SFG
a, b, ¢, d refer to the areas given in Fig. 1.7.3.5. The types corresponding to the different DFGs are given in Table 1.7.3.1 (Féve et al., 1993).
Phase- Inequalities determining three-wave collinear phase matching in
matching biaxial crystals
10?1 mn the Positive biaxial crystal Negative biaxial crystal
principal
Types of SFG planes n (@) <ny(@;) <n,() n(w;) > ny(;) > n,(v,)
Type I a My My e s Mg Mo Mp Mg Mo
)"3 )“l )‘2 )“3 )‘l )‘Z )‘3 )“l )“2
b Py Mo T Ma | Mo Po M e My
Moo M A Ay M h A
¢ Mo _Ma Mo Ths I B B T
Ao A A A T R R
d e Me Mo Mo Ty e M
Mok A M N A M b N
Type IT a Mo Ma M M Mo M Mty Mo My T Mo
A M A T T R
b M Ma M T Mo By M Mo P T M
Moo A M, A M M A
¢ Mo M Mo M Mo M P Mo M M e
A M M A N S T o
e M M M s M Mo | Mg e M Ma T
R T S e Moo A A
d Mg Mo e _Ma Mo | e M Mo Ma Mo Mn
MoA M A MM AT A Ay
d* e VN S TR S W B
)"1 )“2 )‘3 )“1 )“2 )‘1 )‘2 }‘3 )"3 )‘1 )‘2
Type 111 a n n, n, n, n, n, n n n, n n,
P R T B T - R M M M M e
L TR TR S Y Moo A A,
b M M M Mg e e M M M M Mg
MoA A A A RV W VL W
¢ E<nzl+nxz;nzl+nﬁ<h E+n~ >E> ‘]J’_nzz
)“3 1 2 )‘1 )‘2 )“3 )‘1 2 3 1 2
MooA AT A A A AA Ay A A,
d My M M Mo M | M M M M N
Moo M e Ay A M A
d* i e _Ma M Me Mg Mo M Moy Ma ) Mo
Moo M A Mook T N A
Conditions ¢, d are applied if ny ng Ny n, Nz ng Ny ny, Ny n, Nz ng
)"1 )“1 ' )‘2 )\'2 )“3 )“3 )"1 )"1 ' )‘2 )‘Z )“3 )“3
Conditions c*, d* are applied if | n,; ng _my ng Mo np | M nm M ng My Ny
r R I S S S S S A S

Tables 1.7.3.5 and 1.7.3.6 give, respectively, the inequalities that However, type I can exist even if type II or type III is not allowed.
determine collinear phase matching in the principal planes for A type-I phase-matched SFG in area ¢ forbids phase-matching
the three types of three-wave SFG and for the seven types of directions in area b for type-II and type-III SFG. The exclusion is
four-wave SFG. the same between d and a. The consideration of all the possible

The inequalities in Table 1.7.3.5 show that a phase-matching combinations of the inequalities of Table 1.7.3.5 leads to 84
cone which would join the directions a and d is not possible for possible classes of phase-matching cones for both positive and
any type of interaction, because the corresponding inequalities negative biaxial crystals (Feve ef al., 1993; Feve, 1994). There are
have an opposite sense. It is the same for a hypothetical cone 14 classes for second harmonic generation (SHG) which corre-
joining b and c. spond to the degenerated case (w; = w,) (Hobden, 1967).

The existence of type-II or type-III SFG phase matching The coexistence of the different types of four-wave phase
imposes the existence of type I, because the inequalities relative  matching is limited as for the three-wave case: a cone joining a
to type I are always satisfied whenever type II or type III exists. and d or b and c is impossible for type-I SFG. Type I in area d
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Table 1.7.3.6. Refractive-index conditions that determine collinear phase-matching loci in the principal planes of positive and negative biaxial crystals for four-
wave SFG

The types corresponding to the different DFGs are given in Table 1.7.3.2 (Boulanger et al., 1993).

(a) SFG type L.

Phase- Inequalities determining four-wave collinear phase matching in biaxial crystals
matching

loci in the

principal

planes Positive sign Negative sign

a n ny Ny Ny on
w Myt Mo Ths T

)L_4 Ad A Ay

b Ny My Mg My Ny Ny

Mo A A A A

c n, n, n n, ny,
x4 < z1 + 22 + z3 <
PV VL VL W

d M M s M Mg Mo
MooA Ay A A A

Tttt < <—+—+

Ny My Ny Ny Ny
1 4By 2T
MooA A A A Ay A

n n, ny Ny 3 n
3 @ M e Th M
A PR VL VL V)
My My My Ry Ny Ny N
—t—t <= <-4+
F P VL W W VLA VLA
n, n, n n, n, ny
£ o T2 T
As Ay AoA A Ay

(b) SFG type T (i=1,j =2,k =3), SFG type Il (i =3,j =1,k =2), SFG type IV (i =2,j =3,k = 1).

Phase- Inequalities determining four-wave collinear phase matching in biaxial crystals
matching
loci in the
principal
planes Positive sign Negative sign
a @<@+E+n«"k;@+ﬁ+ﬁ<k ﬁ+ﬁ+ﬁ<ﬂ ﬁ+ﬁ+&
Ay L T AN g Ay Ah A
b @+ﬁ+@<'ﬁ<ﬁ+ﬂ+ﬂ @<@+@+n-ﬁ-nﬂ+ﬁ+@<@
Ao A M Ay Ao A A Ay oA M e Ao A Ay
¢ N M My Mo My Ty Ny T M e Pk Mg Ny Ny Ny
<t —+t it =+ <= - - <—+-—+
Ay L D ! Aioh g Ay Ah o g
c* &+ﬂ+ni M My E_F@J,_n"k n1i+ﬁ+ﬁ<@<ﬁ+@+nﬁ
Ao A M Ay Ay iAo X oA A Ay Ah Ay
d Mo Mg My Ny Mg My Ny Mg Ny Mg g My My N s
Mg W T My Yy ik Moo H gy Pk W Wy Tk
Ao M N Aioh g Y R ¥ R % Ay
a @+@+%<nﬁ<ﬁ+&+% @+@+ﬁ<nz4-n3’4<&+@+nﬁ
oA Ay oA A N i N Ay

SFG type II (i, j) = (1, 2); SFG type III (i, j) = (1, 3); SFG type IV (i, j) = (2, 3)

Conditions ny, Ny ong o Ny Ny Ry

¢, d are St T T S T

> d are Y N R N
applied if

Conditions Ny Ny - ny 4 ny  ng Ny

c*, d* are A

.. 4 4 i j i j

applied if

Myi M M My T M
P T N VW
Myt M Thi Ty M M
P N VL W W

forbids the six other types in a. The same restriction exists
between c and b. Types II, III, IV, V*, VI* and VII* cannot exist
without type I; other restrictions concern the relations between
types IL II1, IV and types V*, VI, VII* (Feve, 1994). The counting
of the classes of four-wave phase-matching cones obtained from
all the possible combinations of the inequalities of Table 1.7.3.6 is
complex and it has not yet been done.

For reasons explained later, it can be interesting to consider a
non-collinear interaction. In this case, the projection of the
vectorial phase-matching relation (1.7.3.26) on the wavevector
k(w,, 0, ¢,) of highest frequency w, leads to

y—1
> on(w;, 6, ¢)cosa;, = w,n(w,,0,,¢,), (1.7.3.29)
i=1

where o;, is the angle between k(w;, 6;, ¢;) and k(w,, 0,,, ¢,), with
y =3 for a three-wave interaction and y =4 for a four-wave

interaction. The phase-matching angles (6, ¢,) can be expressed
as a function of the different (6;, ¢,) by the projection of (1.7.3.26)
on the three principal axes of the optical frame.

The configurations of polarization allowing non-collinear
phase matching are the same as for collinear phase matching.
Furthermore, non-collinear phase matching exists only if colli-
near phase matching is allowed; the converse is not true (Feve,
1994). Note that collinear or non-collinear phase-matching
conditions are rarely satisfied over the entire transparency range
of the crystal.

1.7.3.2.3. Quasi phase matching

When index matching is not allowed, it is possible to increase
the energy of the generated wave continuously during the
propagation by introducing a periodic change in the sign of the
nonlinear electric susceptibility, which leads to a periodic reset of
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Table 1.7.3.6 (cont.)

(c) SFG type V* (i=1,j =2,k =3), SFG type VI* (i =2,j =3,k = 1), SFG type VII* (i =3,j =1,k =2).

Phase- Inequalities determining four-wave collinear phase matching in biaxial crystals
matching
loci in the
principal
planes Positive sign Negative sign
a My _ N <M Ry | Mg Ny Ty N,
— <= + + - + + — < —t ot <—< -
Ay Ai A Ak Ao A Ak )»4 oA A )\4 oA A
b n, ng; n n n n n
yi Xj xk y4 74 )] } k xi v] yk x4
i) < —zk Za i k., Txi
;\,.+)Lj+xk Ay )\,.+A,+Ak Ay A,+,+Ak ,.+A]+Ak Ay
4 Ny Nyq Ry My My Ny ny Ny Ny
- er +7 7+ +7 - 24+ =< FE<E4E4F
R S S YR TR Ay Y 9%
cHE ng Ny Ny Ny Ny Ry Ngoong ng My My ny o Ny Ry iy
Py ke T Yy Yy Tk Zabg oy ok T T 79y Tk
A,+Aj+kk Ay Ay )L,+A]+)Lk Ai+Aj+Ak Ay A,+A]+)Lk
d A L L L R L N B L7 Ny Ny o, M Ty | Ty Ny 4
L A TR LA L B A T, L By H = Py K
A * A + A Ay N + A; + A Ao AN + M AN + A Ay
a** Mo | My Pk Ny Py j o Mk Ry (Mg Mg Mgy My Ny Ny Ry
PVl D W WA N WD S Vb VS VA VAW
SFG type V*, (i = 1); SFG type VI* (i =2) ; SFG type VII* (i = 3)
Conditions i M M Mo Mg Mo
¢ d. are Mo A Ao Ay Ao N Ay Ay
applied if
Conditions Ny Ny i Ny, Ny ng N, ony
C*%, d** are M Ay A A M Ay A A
applied if

7 between the waves (Armstrong et al., 1962). This method is 1.7.3.2.4. Effective coefficient and field tensor
called quasi phase matching (QPM). The transfer of energy
between the nonlinear polarization and the generated electric
field never alternates if the reset is made at each coherence

length. In this case and for a three-wave SFG, the nonlinear . . . . .
L . o tions, and so impose the direction of the unit electric field vectors
polarization sequence is the following:

. NL _ ) . of the interacting waves according to (1.7.3.9). The effective
k(s)l))]f;(})m 010 Le, PTH(ws) = sox7(ws)eie2E, Ey explilk(ey) + coefficient, given by (1.7.3.23) and (1.7.3.25), depends in part on
g

(i) from L, t0 2L, PV (03) = —gx®(w;)e, e, E, E, exp{l[k(a)l) 'Ehe linear (C)lpntcal fprt(})lper"ufs vz? the ﬁgtld 'ltentsqr, f\;vlﬁlch is tthe
4 k(w)]Z), which is equivalent to PM(wy) = ensor product of the interacting unit electric field vectors

) (Boulanger, 1989; Boulanger & Marnier, 1991; Boulanger et al.,
EoX " (@3)e,&,E, E, exp({[k(w,) + k(,))Z — }). 1993; Zyss, 1993). Indeed, the effective coefficient is the
contraction between the field tensor and the electric suscept-
ibility tensor of corresponding order:

1.7.3.2.4.1. Definitions and symmetry properties

The refractive indices and their dispersion in frequency
determine the existence and loci of the phase-matching direc-

QPM devices are a recent development and are increasingly
being considered for applications (Fejer et al, 1992). The
nonlinear medium can be formed by the bonding of thin wafers
alternately rotated by ; this has been done for GaAs (Gordon et
al., 1993). For ferroelectric crystals, it is possible to form periodic
reversing of the spontaneous polarization in the same sample by
proton- or ion-exchange techniques, or by applying an electric
field, which leads to periodically poled (pp) materials like
ppLiNbO; or ppKTiOPO, (Myers et al., 1995; Karlsson &
Laurell, 1997; Rosenman et al., 1998).

Quasi phase matching offers three main advantages when
compared with phase matching: it may be used for any config-
uration of polarization of the interacting waves, which allows us
to use the largest coefficient of the x® tensor, as explained in the
following section; QPM can be achieved over the entire trans-
parency range of the crystal, since the periodicity can be adjusted;
and, finally, double refraction and its harmful effect on the
nonlinear efficiency can be avoided because QPM can be realized
in the principal plane of a uniaxial crystal or in the principal axes
of biaxial crystals. Nevertheless, there are limitations due to the
difficulty in fabricating the corresponding materials: diffusion-
bonded GaAs has strong reflection losses and periodic patterns

of ppKTP or ppLN can only be written over a thickness that does  Fig. 1.7.3.5. Stereographic projection on the optical frame of the possible loci
not exceed 3 mm, which limits the input energy. of phase-matching directions in the principal planes of a biaxial crystal.
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(i) For three-wave mixing,

2
Xf:fz(wm Wy, O, 97 (p) = zk: Xijk(wa)Fijk(wm W5 O, 01 (p)
ij

= X(z)(a)a) : F(Z)(wa’ Wy Dy 07 (p)’

(1.7.3.30)
with
F(w,, 0, 0., 0, 9) = e(w,, 0, 9) ® e(w,, 0, 9) @ e(w,, 0, ¢),
(1.7.3.31)

where w,, w,,®, correspond to w;,w,w, for SFG (w;=
w, +w,); to w,w;,w, for DFG (0, =w; —w,); and to
,, 0y, ®, for DFG (w, = w; — w).

(ii) For four-wave mixing,

3
X(efﬁ(wa, Wy Wy 04, 0, 0) =3 Xijkl(wa)Fijkl(wm Wy 0, @y, 0, ¢)
ijkl

= X(3)(a)a) : FG)(CL)‘“ Wy Wy Wy 0’ (p)’
(1.7.3.32)

with
FO (@, 0y, 0, 04, ¢)
= e(w,, 0, ¢) ® e(wy, 0, ) ® e(w,. 0, 9) @ e(w,, 0, ¢),
(1.7.3.33)

where w,, w,, w,, w,; correspond to w,, w,, ,, w; for SFG (w, =
w; + 0, + w3); to w;, w,, w,, w; for DFG (0, = 0, — 0, — ®,);
to w,, w,, w,, w3 for DFG (0, = v, — v, — w5); and to w;, w,,
w;, w, for DFG (w3 = 0, — w; — »,).

Each e(w;, 6, ) corresponds to a given eigen electric field
vector.

The components of the field tensor are trigonometric functions
of the direction of propagation.

Particular relations exist between field-tensor components of
SFG and DFG which are valid for any direction of propagation.
Indeed, from (1.7.3.31) and (1.7.3.33), it is obvious that the field-
tensor components remain unchanged by concomitant permuta-
tions of the electric field vectors at the different frequencies and
the corresponding Cartesian indices (Boulanger & Marnier, 1991;
Boulanger et al., 1993):

F;}ielez(w3 =+ )= F;}ce}ez(wl = w; — ,)

=Fi (o, =w;— o) (1.7.3.34)
and
Fijgleze}(ah =w, + 0, + w;)
= F (0 = 0y — @, — 03)
= Fi'“ (0, = 0y — 0 — wy)
= F;;;4e1ez(a)3 =0, — 0 —w,),
(1.7.3.35)

where e; is the unit electric field vector at w;.

For a given interaction, the symmetry of the field tensor is
governed by the vectorial properties of the electric fields, detailed
in Section 1.7.3.1. This symmetry is then characteristic of both the
optical class and the direction of propagation. These properties
lead to four kinds of relations between the field-tensor compo-
nents described later (Boulanger & Marnier, 1991; Boulanger et
al., 1993). Because of their interest for phase matching, we
consider only the uniaxial and biaxial classes.

(a) The number of zero components varies with the direction
of propagation according to the existence of nil electric field
vector components. The only case where all the components are

nonzero concerns any direction of propagation out of the prin-
cipal planes in biaxial crystals.

(b) The orthogonality relation (1.7.3.10) between any ordinary
and extraordinary waves propagating in the same direction leads
to specific relations independent of the direction of propagation.
For example, the field tensor of an (eooo) configuration of
polarization (one extraordinary wave relative to the first Carte-
sian index and three ordinary waves relative to the three other
indices) verifies Foy+ Fy (+ F ;= 0) = F+ Fyy
(+ F,;; =0) = Fy; + F;, (+ F;;, = 0) =0, with i and j equal to
x or y; the combination of these three relations leads to F,,,.. =
—Fe = —Fy = —Fyy, By = —F oy = —F,y,, = —F,,,, and

vy = Fy = Frype = —Foye = Foye = —Foy- Ina biaxial
crystal, this kind of relation does not exist out of the principal
planes.

(c) The fact that the direction of the ordinary electric field
vectors in uniaxial crystals does not depend on the frequency,
(1.7.3.11), leads to symmetry in the Cartesian indices relative to
the ordinary waves. These relations can be redundant in
comparison with certain orthogonality relations and are valid for
any direction of propagation in uniaxial crystals. It is also the case
for biaxial crystals, but only in the principal planes xz and yz. In
the xy plane of biaxial crystals, the ordinary wave, (1.7.3.15), has a
walk-off angle which depends on the frequency, and the extra-
ordinary wave, (1.7.3.16), has no walk-off angle: then the field
tensor is symmetric in the Cartesian indices relative to the
extraordinary waves. The walk-off angles of ordinary and extra-
ordinary waves are nil along the principal axes of the index
surface of biaxial and uniaxial crystals and so everywhere in the
xy plane of uniaxial crystals. Thus, any field tensor associated with
these directions of propagation is symmetric in the Cartesian
indices relative to both the ordinary and extraordinary waves.

(d) Equalities between frequencies can create new symmetries:
the field tensors of the uniaxial class for any direction of
propagation and of the biaxial class in only the principal planes
xz and yz become symmetric in the Cartesian indices relative to
the extraordinary waves at the same frequency; in the xy plane of
a biaxial crystal, this symmetry concerns the indices relative to
the ordinary waves. Equalities between frequencies are the only
situations for which the field tensors are partly symmetric out of
the principal planes of a biaxial crystal: the symmetry concerns
the indices relative to the waves (+) with identical frequencies; it
is the same for the waves (—): for example, Fiﬁ(‘L*(Zw =w+w) =
Fi "Qo = o+ w), Fii (o, = o+ o+o)= F (o, =
0+ o+ w), Fi;lc177+(w4 = ototo)= Fi;]?7+(w4 =
® + o+ w;) and so on.

1.7.3.2.4.2. Uniaxial class

The field-tensor components are calculated from (1.7.3.11) and
(1.7.3.12). The phase-matching case is the only one considered
here: according to Tables 1.7.3.1 and 1.7.3.2, the allowed config-
urations of polarization of three-wave and four-wave interactions,
respectively, are the 20.e (two ordinary and one extraordinary
waves), the 2e.0 and the 3o.e, 3e.0, 20.2e.

Tables 1.7.3.7 and 1.7.3.8 give, respectively, the matrix repre-
sentations of the three-wave interactions (eoo), (oee) and of the
four-wave (oeee), (e000), (ooee) interactions for any direction of
propagation in the general case where all the frequencies are
different. In this situation, the number of independent compo-
nents of the field tensors are: 7 for 20.e, 12 for 2e.0, 9 for 30.e, 28
for 3e.0 and 16 for 20.2e. Note that the increase of the number of
ordinary waves leads to an enhancement of symmetry of the field
tensors.

If there are equalities between frequencies, the field tensors
oee, oeee and ooee become totally symmetric in the Cartesian
indices relative to the extraordinary waves and the tensors eoo
and eooo remain unchanged.

Table 1.7.3.9 gives the field-tensor components specifically nil
in the principal planes of uniaxial and biaxial crystals. The nil
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components for the other configurations of polarization are
obtained by permutation of the Cartesian indices and the
corresponding polarizations.

From Tables 1.7.3.7 and 1.7.3.8, it is possible to deduce all the
other 2e.o interactions (eeo), (eoe), the 20.e interactions (ooe),
(0eo), the 3o.e interactions (oooe), (0eoo), (ooeo), the 3e.o
interactions (eoee), (eeoe), (eeeo) and the 20.2e interactions
(0eoe), (eoeo), (ee00), (0eeo), (eooe). The corresponding inter-
actions and types are given in Tables 1.7.3.1 and 1.7.3.2.
According to (1.7.3.31) and (1.7.3.33), the magnitudes of two
permutated components are equal if the permutation of polar-
izations are associated with the corresponding frequencies. For
example, according to Table 1.7.3.2, two permutated field-tensor
components have the same magnitude for permutation between
the following 30.e interactions:

(i) (eoo0) SFG (wy4) type I < 0 and the three (0eoo) interac-
tions, DFG (w;) type II < 0, DFG (w,) type 111 < 0, DFG (w;) type
IV <0

(ii) the three (oooe) interactions, SFG (w,) type II > 0, DFG
(wy) type III > 0, DFG (w,) type IV > 0 and (eooo) DFG (w3)
type I > 0;

(iii) the two (0o0eo) interactions SFG (w,) type 111 > 0, DFG
(wy) type IV > 0, (eooo) DFG (w,) type I > 0, and (0ooe) DFG
(w3) type 11 > 0;

(iv) (0eoo) SFG (w,) type IV > 0, (eocoo) DFG (w,) type I > 0,
and the two interactions (0oeo) DFG (w,) type 11 > 0, DFG (w3)
type III > 0.

The contraction of the field tensor and the uniaxial dielectric
susceptibility tensor of corresponding order, given in Tables
1.7.2.2 to 1.7.2.5, is nil for the following uniaxial crystal classes

Table 1.7.3.7. Matrix representations of the (oee) and (eoo) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with
w; # w, (Boulanger & Marnier, 1991)

F{ﬂi =0 & ® * O 0 Ff,r'ff = anm L O Fg.{ T _Fhmr
Interactions Three-rank Fy; (6, ¢) field tensors
Type eoo ¥z zy Xz zZx Xy X
SFG (ws) type I <0
DFG (w;) type I >0 X ] . b—o
DFG (w,) type I >0
F=y ® . P_O
z . . . .—.
Type oee xx oy zz yz zy Xz ZX Xy X
SFG (ws) type I >0
DFG (w;) type I <0 X [ ] @ -] L b—o
DFG (w,) type I <0
F=y3| e ° e e o—o
z . . .

Table 1.7.3.8. Matrix representations of the (oeee), (eooo) and (ooee) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz,
with o, # w, # w; (Boulanger et al., 1993)

F ik =0

—e I ikl = i3 mnop

*—0 FJ_’;'H = _Fmimp

Interactions Four-rank Fj(6, ¢) field tensors

Type oeee
SFG(wy) type
I>0

Xxx Vy¥y zzz yzz zZyz zzy YyvZ yzy ZVW

XZZ ZXZ ZZX XXZ

XZX ZXX VMY VI XY XM VXY 02 XZY VxZ JEX ZXY o

DFG (w;) type X

1<0 =
F3)=|y
DFG (w,) type Y

M=t

I1<0
DFG (ws) type
I<0

(5]

Type eooo
SFG (wy) type
1<0

XZZ ZXZ ZZX XXZ XIZIX ZXX

XYy Yxy YyYX XXy XYX VXX XyZ XIV VXZ YIX ZXY ZPX

DFG (w;) type

XXX YVY ZZZ YVIZ ZVZ ZZV VVZ VIV VY
1>0
DFG (w,) type

x 7 :
F3)=|y & .
1>0

DFG (ws) type =
I1>0

Type ooee
SFG (w,) type
Vis0

XXX VYV ZZZ YZZz ZYZ ZZY YVZ YZY 2YY XIZ ZXZ ZZIX XXZ XZX

ZXX XVY VXY

VYX XXY XVX VXX XVZ XZV VXZ VIX ZXV ZVX

DFG (w) type

Viso0

X f :
Fo=| x k _

DFG (w,) type

V>0
DFG (ws) type
V>0

//
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Table 1.7.3.9. Field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals for three-wave and four-wave interactions

(i,j. k) =x,y or z.

Configurations Nil field-tensor components
of polarization | (xy) plane (xz) plane (yz) plane
€00 Fy=0,F; =0 Fo=Fu =0 Fy=F;, =0
yik = ijk =0
oee Fo = F[jx =0 ik = Lijy = 0 Fo = F[j.r =0
Fiyk: ijy:o xik = ijk_o
eooo Fou = 0; Fyu = 0 Figq = Fjy = Fie = 0 Fiyy = Fyy = Fyy = 0
yikl = F, xjkl = 0
oeee Fixkl = Fljxl = Fi]kx =0 Fiykl = Fi/'yl = Fijky =0 ixkl = Fijxl = Fljkx =0
ivkl = Lijyr = Lijgy = xjkl = yikl = 0
ooee it = Lijkx = ijkl =Fiy =0 ijkl = Fiykl =0
iyl = Lijy = Fyyz =F ijky = 0 il = Lijex = 0

and configurations of polarization: D4 and Dy for 20.e, Cy4, and
Cs, for 2e.0, D¢, Dgy,, D3, and Cg, for 30.e and 3e.o. Thus, even if
phase-matching directions exist, the effective coefficient in these
situations is nil, which forbids the interactions considered
(Boulanger & Marnier, 1991; Boulanger et al., 1993). The number
of forbidden crystal classes is greater under the Kleinman
approximation. The forbidden crystal classes have been deter-
mined for the particular case of third harmonic generation
assuming Kleinman conjecture and without consideration of the
field tensor (Midwinter & Warner, 1965).

1.7.3.2.4.3. Biaxial class

The symmetry of the biaxial field tensors is the same as for the
uniaxial class, though only for a propagation in the principal
planes xz and yz; the associated matrix representations are given
in Tables 1.7.3.7 and 1.7.3.8, and the nil components are listed in
Table 1.7.3.9. Because of the change of optic sign from either side
of the optic axis, the field tensors of the interactions for which the
phase-matching cone joins areas b and a or a and c, given in Fig.
1.7.3.5, change from one area to another: for example, the field
tensor (eoee) becomes an (0eoo) and so the solicited components
of the electric susceptibility tensor are not the same.

Po ) 2t
Pump laser > X S
NLC
(a)
Po { " Pl
7(2)
Pump laser > 2
k NLC
HTw T 2o
HR2w® T o
(b)
xf.?} Po
Pump laser
NLC
HRw T 2w
HRZo (c) HR®

Fig. 1.7.3.6. Schematic configurations for second harmonic generation. (a)
Non-resonant SHG; (b) external resonant SHG: the resonant wave may
either be the fundamental or the harmonic one; (c) internal resonant SHG.
P®2 are the fundamental and harmonic powers; HT® and HR®?* are the
high-transmission and high-reflection mirrors at w or 2w and 7% are the
transmission coefficients of the output mirror at @ or 2w. NLC is the
nonlinear crystal with a nonzero x?.

199

The nonzero field-tensor components for a propagation in the

xy plane of a biaxial crystal are: F,,, F,,, F,,, # F,,, for (e0o);
FYZZ’ F}/ZZ for (Oee); FZXXX’ zyyy? xyy # Fzyxy # Fzyyx’
szxy # szyx 7é Fzyxx for (6000); szzz’ Fyzzz for (06‘66‘);

ez ez Frxzes Fyyze fOr (00€e). The nonzero components for
the other configurations of polarization are obtained by the
associated permutations of the Cartesian indices and the corre-
sponding polarizations.

The field tensors are not symmetric for a propagation out of
the principal planes in the general case where all the frequencies
are different: in this case there are 27 independent components
for the three-wave interactions and 81 for the four-wave inter-
actions, and so all the electric susceptibility tensor components
are solicited.

As phase matching imposes the directions of the electric fields
of the interacting waves, it also determines the field tensor and
hence the effective coefficient. Thus there is no possibility of
choice of the x® coefficients, since a given type of phase
matching is considered. In general, the largest coefficients of
polar crystals, i.e. x,,,, are implicated at a very low level when
phase matching is achieved, because the corresponding field
tensor, i.e. F,,_, is often weak (Boulanger et al., 1997). In contrast,
QPM authorizes the coupling between three waves polarized
along the z axis, which leads to an effective coefficient which is
purely x... Le. Xe = (2/7m)x,,,, where the numerical factor
comes from the periodic character of the rectangular function of
modulation (Fejer et al., 1992).

1.7.3.3. Integration of the propagation equations
1.7.3.3.1. Spatial and temporal profiles

The resolution of the coupled equations (1.7.3.22) or (1.7.3.24)
over the crystal length L leads to the electric field amplitude
E.(X,Y, L) of each interacting wave. The general solutions are
Jacobian elliptic functions (Armstrong et al, 1962; Feve,
Boulanger & Douady, 2002). The integration of the systems is
simplified for cases where one or several beams are held constant,
which is called the undepleted pump approximation. We consider
mainly this kind of situation here. The power of each interacting
wave is calculated by integrating the intensity over the cross
section of each beam according to (1.7.3.8). For our main
purpose, we consider the simple case of plane-wave beams with
two kinds of transverse profile:

E(X,Y,Z) = eE,(Z) for (X,Y)€[-w,,+w,]

EX,Y,2)=0 elsewhere (1.7.3.36)
for a flat distribution over a radius w,;
E(X,Y, Z) = eE,(Z) exp[—(X* + Y?)/w?] (1.7.3.37)

for a Gaussian distribution, where w, is the radius at (1/¢) of the
electric field and so at (1/¢?) of the intensity.

references


http://it.iucr.org/Db/ch1o7v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


