International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 1.7, pp. 196-199

Section 1.7.3.2.4. Effective coefficient and field tensor

B. Boulangera* and J. Zyssb

aInstitut Néel CNRS Université Joseph Fourier, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France, and bLaboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
Correspondence e-mail:  benoit.boulanger@grenoble.cnrs.fr

1.7.3.2.4. Effective coefficient and field tensor

| top | pdf |

1.7.3.2.4.1. Definitions and symmetry properties

| top | pdf |

The refractive indices and their dispersion in frequency determine the existence and loci of the phase-matching directions, and so impose the direction of the unit electric field vectors of the interacting waves according to (1.7.3.9)[link]. The effective coefficient, given by (1.7.3.23)[link] and (1.7.3.25)[link], depends in part on the linear optical properties via the field tensor, which is the tensor product of the interacting unit electric field vectors (Boulanger, 1989[link]; Boulanger & Marnier, 1991[link]; Boulanger et al., 1993[link]; Zyss, 1993[link]). Indeed, the effective coefficient is the contraction between the field tensor and the electric susceptibility tensor of corresponding order:

  • (i) For three-wave mixing,[\eqalignno{ \chi _{\rm eff}^{(2)}(\omega _a, \omega _b, \omega _c, \theta, \varphi) &= \textstyle\sum\limits_{ijk}{\chi _{ijk}}(\omega _a)F_{ijk}(\omega _a, \omega _b, \omega _c, \theta, \varphi) &\cr&= \chi ^{(2)}(\omega _a)\cdot F^{(2)}(\omega _a, \omega _b, \omega _c, \theta, \varphi), &\cr&&(1.7.3.30)}]with [F^{(2)}(\omega _a, \omega _b, \omega _c, \theta, \varphi) = {\bf e}(\omega _a, \theta, \varphi) \otimes {\bf e}(\omega _b, \theta, \varphi) \otimes {\bf e}(\omega _c, \theta, \varphi), \eqno(1.7.3.31)]where [\omega_a, \omega_b, \omega_c] correspond to [\omega_3, \omega_1, \omega_2] for SFG ([\omega_3 =] [ \omega_1+ \omega_2]); to [\omega_1, \omega_3, \omega_2] for DFG ([\omega_1= \omega_3- \omega_2]); and to [\omega_2, \omega_3, \omega_1] for DFG ([\omega_2= \omega_3- \omega_1]).

  • (ii) For four-wave mixing,[\eqalignno{ \chi _{\rm eff}^{(3)}(\omega _a, \omega _b, \omega _c, \omega _d, \theta, \varphi) &= \textstyle\sum\limits_{ijkl}{\chi _{ijkl}}(\omega _a)F_{ijkl}(\omega _a, \omega _b, \omega _c, \omega _d, \theta, \varphi) & \cr &= \chi ^{(3)}(\omega _a)\cdot F^{(3)}(\omega _a, \omega _b, \omega _c, \omega _d, \theta, \varphi), &\cr&&(1.7.3.32)}]with[\displaylines{F^{(3)}(\omega _a, \omega _b, \omega _c, \omega _d \theta, \varphi) \hfill\cr\quad= {\bf e}(\omega _a, \theta, \varphi) \otimes {\bf e}(\omega _b, \theta, \varphi) \otimes {\bf e}(\omega _c, \theta, \varphi) \otimes {\bf e}(\omega _d, \theta, \varphi),\hfill\cr\hfill(1.7.3.33)}]where [\omega_a, \omega_b, \omega_c, \omega_d] correspond to [\omega_4, \omega_1, \omega_2,\omega_3] for SFG ([\omega_4 =] [ \omega_1+ \omega_2 + \omega_3]); to [\omega_1, \omega_4, \omega_2,\omega_3] for DFG ([\omega_1 =] [ \omega_4 - \omega_2 - \omega_3]); to [\omega_2, \omega_4, \omega_1, \omega_3] for DFG ([\omega_2 =] [ \omega_4 - \omega_1-\omega_3]); and to [\omega_3,] [ \omega_4, ] [\omega_1,] [\omega_2] for DFG ([\omega_3 =] [ \omega_4 - \omega_1 - \omega_2]).

Each [{\bf e}(\omega_i,\theta,\varphi)] corresponds to a given eigen electric field vector.

The components of the field tensor are trigonometric functions of the direction of propagation.

Particular relations exist between field-tensor components of SFG and DFG which are valid for any direction of propagation. Indeed, from (1.7.3.31)[link] and (1.7.3.33)[link], it is obvious that the field-tensor components remain unchanged by concomitant permutations of the electric field vectors at the different frequencies and the corresponding Cartesian indices (Boulanger & Marnier, 1991[link]; Boulanger et al., 1993[link]):[\eqalignno{F_{ijk}^{{\bf e}_3{\bf e}_1{\bf e}_2}(\omega_3=\omega_1+\omega_2) &=F_{jik}^{{\bf e}_1{\bf e}_3{\bf e}_2}(\omega_1=\omega_3-\omega_2)&\cr &=F_{kij}^{{\bf e}_2{\bf e}_3{\bf e}_1}(\omega_2=\omega_3-\omega_1)&(1.7.3.34)}]and[\eqalignno{&F_{ijkl}^{{\bf e}_4{\bf e}_1{\bf e}_2{\bf e}_3}(\omega_4=\omega_1+\omega_2+\omega_3)&\cr&=F_{jikl}^{{\bf e}_1{\bf e}_4{\bf e}_2{\bf e}_3}(\omega_1=\omega_4-\omega_2-\omega_3)&\cr&=F_{kijl}^{{\bf e}_2{\bf e}_4{\bf e}_1{\bf e}_3}(\omega_2=\omega_4-\omega_1-\omega_3)&\cr&=F_{lijk}^{{\bf e}_3{\bf e}_4{\bf e}_1{\bf e}_2}(\omega_3=\omega_4-\omega_1-\omega_2),&\cr&&(1.7.3.35)}]where ei is the unit electric field vector at ωi.

For a given interaction, the symmetry of the field tensor is governed by the vectorial properties of the electric fields, detailed in Section 1.7.3.1[link]. This symmetry is then characteristic of both the optical class and the direction of propagation. These properties lead to four kinds of relations between the field-tensor components described later (Boulanger & Marnier, 1991[link]; Boulanger et al., 1993[link]). Because of their interest for phase matching, we consider only the uniaxial and biaxial classes.

(a) The number of zero components varies with the direction of propagation according to the existence of nil electric field vector components. The only case where all the components are nonzero concerns any direction of propagation out of the principal planes in biaxial crystals.

(b) The orthogonality relation (1.7.3.10)[link] between any ordinary and extraordinary waves propagating in the same direction leads to specific relations independent of the direction of propagation. For example, the field tensor of an (eooo) configuration of polarization (one extraordinary wave relative to the first Cartesian index and three ordinary waves relative to the three other indices) verifies [F_{xxij} + F_{yyij}] [(+ \,\,F_{zzij} = 0)=] [ F_{xixj} + F_{yiyj}] [ (+\,\, F_{zizj} = 0)=] [F_{xijx} + F_{yijy}] [ (+ \,\,F_{zijz} = 0)=] [], with i and j equal to x or y; the combination of these three relations leads to [F_{xxxx}=] [-F_{yyxx}=] [ -F_{yxyx}=] [-F_{yxxy}], [F_{yyyy}=] [-F_{xxyy}=] [-F_{xyxy}=] [-F_{xyyx}] and [F_{yxyy}=] [F_{yyxy}=] [F_{yyyx}=] [ -F_{xyxx}=] [F_{xxyx} =] [-F_{xxxy}]. In a biaxial crystal, this kind of relation does not exist out of the principal planes.

(c) The fact that the direction of the ordinary electric field vectors in uniaxial crystals does not depend on the frequency, (1.7.3.11)[link], leads to symmetry in the Cartesian indices relative to the ordinary waves. These relations can be redundant in comparison with certain orthogonality relations and are valid for any direction of propagation in uniaxial crystals. It is also the case for biaxial crystals, but only in the principal planes xz and yz. In the xy plane of biaxial crystals, the ordinary wave, (1.7.3.15)[link], has a walk-off angle which depends on the frequency, and the extraordinary wave, (1.7.3.16)[link], has no walk-off angle: then the field tensor is symmetric in the Cartesian indices relative to the extraordinary waves. The walk-off angles of ordinary and extraordinary waves are nil along the principal axes of the index surface of biaxial and uniaxial crystals and so everywhere in the xy plane of uniaxial crystals. Thus, any field tensor associated with these directions of propagation is symmetric in the Cartesian indices relative to both the ordinary and extraordinary waves.

(d) Equalities between frequencies can create new symmetries: the field tensors of the uniaxial class for any direction of propagation and of the biaxial class in only the principal planes xz and yz become symmetric in the Cartesian indices relative to the extraordinary waves at the same frequency; in the xy plane of a biaxial crystal, this symmetry concerns the indices relative to the ordinary waves. Equalities between frequencies are the only situations for which the field tensors are partly symmetric out of the principal planes of a biaxial crystal: the symmetry concerns the indices relative to the waves (+) with identical frequencies; it is the same for the waves (−): for example, [F_{ijk}^{-++}(2\omega=] [\omega+\omega)=] [F_{ikj}^{-++}(2\omega=] [\omega+\omega)], [F_{ijkl}^{-++-}(\omega_4=] [\omega+\omega+\omega_3)=] [F_{ikjl}^{-++-}(\omega_4=] [\omega+\omega+\omega_3)], [F_{ijkl}^{---+}(\omega_4=] [\omega+\omega+\omega_3)=] [F_{ikjl}^{---+}(\omega_4=] [\omega+\omega+\omega_3)] and so on.

1.7.3.2.4.2. Uniaxial class

| top | pdf |

The field-tensor components are calculated from (1.7.3.11)[link] and (1.7.3.12)[link]. The phase-matching case is the only one considered here: according to Tables 1.7.3.1[link] and 1.7.3.2[link], the allowed configurations of polarization of three-wave and four-wave interactions, respectively, are the 2o.e (two ordinary and one extraordinary waves), the 2e.o and the 3o.e, 3e.o, 2o.2e.

Tables 1.7.3.7[link] and 1.7.3.8[link] give, respectively, the matrix representations of the three-wave interactions (eoo), (oee) and of the four-wave (oeee), (eooo), (ooee) interactions for any direction of propagation in the general case where all the frequencies are different. In this situation, the number of independent components of the field tensors are: 7  for 2o.e, 12 for 2e.o, 9 for 3o.e, 28 for 3e.o and 16 for 2o.2e. Note that the increase of the number of ordinary waves leads to an enhancement of symmetry of the field tensors.

Table 1.7.3.7| top | pdf |
Matrix representations of the (oee) and (eoo) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with [\omega_1\ne \omega_2] (Boulanger & Marnier, 1991[link])

[Scheme scheme1]

InteractionsThree-rank [F_{ijk}(\theta,\varphi)] field tensors
Type eoo [Scheme scheme2]
SFG (ω3) type I < 0
DFG (ω1) type I > 0
DFG (ω2) type I > 0
Type oee [Scheme scheme3]
SFG (ω3) type I > 0
DFG (ω1) type I < 0
DFG (ω2) type I < 0

Table 1.7.3.8| top | pdf |
Matrix representations of the (oeee), (eooo) and (ooee) field tensors of the uniaxial class and of the biaxial class in the principal planes xz and yz, with [\omega_1\ne\omega_2\ne\omega_3] (Boulanger et al., 1993[link])

[Scheme scheme4]

InteractionsFour-rank [F_{ijkl}(\theta,\varphi)] field tensors
Type oeee [Scheme scheme5]
SFG(ω4) type I > 0
DFG (ω1) type I < 0
DFG (ω2) type I < 0
DFG (ω3) type I < 0
Type eooo [Scheme scheme6]
SFG (ω4) type I < 0
DFG (ω1) type I > 0
DFG (ω2) type I > 0
DFG (ω3) type I > 0
Type ooee [Scheme scheme7]
SFG (ω4) type V4 > 0
DFG (ω1) type V1 > 0
DFG (ω2) type V2 > 0
DFG (ω3) type V3 > 0

If there are equalities between frequencies, the field tensors oee, oeee and ooee become totally symmetric in the Cartesian indices relative to the extraordinary waves and the tensors eoo and eooo remain unchanged.

Table 1.7.3.9[link] gives the field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals. The nil components for the other configurations of polarization are obtained by permutation of the Cartesian indices and the corresponding polarizations.

Table 1.7.3.9| top | pdf |
Field-tensor components specifically nil in the principal planes of uniaxial and biaxial crystals for three-wave and four-wave interactions

[(i,j,k) = x, y \hbox{ or } z].

Configurations of polarizationNil field-tensor components
(xy) plane(xz) plane(yz) plane
[e o o] [F_{xjk}= 0; F_{yjk}= 0] [F_{ixk}= F_{ijx}= 0 ] [F_{iyk}= F_{ijy} = 0 ]
    [F_{yjk}= 0] [F_{xjk}= 0]
[o e e] [F_{ixk}= F_{ijx}= 0] [F_{iyk}= F_{ijy}= 0] [F_{ixk}= F_{ijx}= 0]
  [F_{iyk}= F_{ijy}= 0] [F_{xik}= 0] [F_{yjk}= 0]
[e o o o] [F_{xjkl}= 0; F_{yjkl}= 0] [F_{ixkl}= F_{ijxl}= F_{ijkx}= 0] [F_{iykl}= F_{ijyl}= F_{ijky}= 0]
    [F_{yjkl}= 0] [F_{xjkl}= 0]
[o e e e] [F_{ixkl}= F_{ijxl}= F_{ijkx}= 0] [F_{iykl}= F_{ijyl}= F_{ijky}= 0] [F_{ixkl}= F_{ijxl}= F_{ijkx}= 0]
  [F_{iykl}= F_{ijyl}= F_{ijky}= 0] [F_{xjkl}= 0 ] [F_{yjkl}= 0]
[o o e e] [F_{ijxl}= F_{ijkx}= 0] [F_{xjkl}= F_{ixkl}= 0] [F_{yjkl}= F_{iykl}= 0]
  [F_{ijyl}= F_{ijky}= 0] [F_{ijyl}= F_{ijky}= 0] [F_{ijxl}= F_{ijkx}= 0]

From Tables 1.7.3.7[link] and 1.7.3.8[link], it is possible to deduce all the other 2e.o interactions (eeo), (eoe), the 2o.e interactions (ooe), (oeo), the 3o.e interactions (oooe), (oeoo), (ooeo), the 3e.o interactions (eoee), (eeoe), (eeeo) and the 2o.2e inter­actions (oeoe), (eoeo), (eeoo), (oeeo), (eooe). The corresponding interactions and types are given in Tables 1.7.3.1[link] and 1.7.3.2[link]. According to (1.7.3.31)[link] and (1.7.3.33)[link], the magnitudes of two permutated components are equal if the permutation of polarizations are associated with the corresponding frequencies. For example, according to Table 1.7.3.2[link], two permutated field-tensor components have the same magnitude for permutation between the following 3o.e interactions:

  • (i) (eooo) SFG (ω4) type I < 0 and the three (oeoo) interactions, DFG (ω1) type II < 0, DFG (ω2) type III < 0, DFG (ω3) type IV < 0;

  • (ii) the three (oooe) interactions, SFG (ω4) type II > 0, DFG (ω1) type III > 0, DFG (ω2) type IV > 0 and (eooo) DFG (ω3) type I > 0;

  • (iii) the two (ooeo) interactions SFG (ω4) type III > 0, DFG (ω1) type IV > 0, (eooo) DFG (ω2) type I > 0, and (oooe) DFG (ω3) type II > 0;

  • (iv) (oeoo) SFG (ω4) type IV > 0, (eooo) DFG (ω1) type I > 0, and the two interactions (ooeo) DFG (ω2) type II > 0, DFG (ω3) type III > 0.

The contraction of the field tensor and the uniaxial dielectric susceptibility tensor of corresponding order, given in Tables 1.7.2.2[link] to 1.7.2.5[link][link][link], is nil for the following uniaxial crystal classes and configurations of polarization: D4 and D6 for 2o.e, C4v and C6v for 2e.o, D6, D6h, D3h and C6v for 3o.e and 3e.o. Thus, even if phase-matching directions exist, the effective coefficient in these situations is nil, which forbids the interactions considered (Boulanger & Marnier, 1991[link]; Boulanger et al., 1993[link]). The number of forbidden crystal classes is greater under the Kleinman approximation. The forbidden crystal classes have been determined for the particular case of third harmonic generation assuming Kleinman conjecture and without consideration of the field tensor (Midwinter & Warner, 1965[link]).

1.7.3.2.4.3. Biaxial class

| top | pdf |

The symmetry of the biaxial field tensors is the same as for the uniaxial class, though only for a propagation in the principal planes xz and yz; the associated matrix representations are given in Tables 1.7.3.7[link] and 1.7.3.8[link], and the nil components are listed in Table 1.7.3.9[link]. Because of the change of optic sign from either side of the optic axis, the field tensors of the interactions for which the phase-matching cone joins areas b and a or a and c, given in Fig. 1.7.3.5[link], change from one area to another: for example, the field tensor (eoee) becomes an (oeoo) and so the solicited components of the electric susceptibility tensor are not the same.

The nonzero field-tensor components for a propagation in the xy plane of a biaxial crystal are: [F_{zxx}], [F_{zyy}], [F_{zxy}\ne F_{zyx}] for (eoo); [F_{xzz}], [F_{yzz}] for (oee); [F_{zxxx}], [F_{zyyy}], [F_{zxyy}\ne F_{zyxy}\ne F_{zyyx}], [F_{zxxy}\ne F_{zxyx} \ne F_{zyxx}] for (eooo); [F_{xzzz}], [F_{yzzz}] for (oeee); [F_{xyzz}\ne F_{yxzz}], [F_{xxzz}], [F_{yyzz}] for (ooee). The nonzero components for the other configurations of polarization are obtained by the associated permutations of the Cartesian indices and the corresponding polarizations.

The field tensors are not symmetric for a propagation out of the principal planes in the general case where all the frequencies are different: in this case there are 27 independent components for the three-wave interactions and 81 for the four-wave interactions, and so all the electric susceptibility tensor components are solicited.

As phase matching imposes the directions of the electric fields of the interacting waves, it also determines the field tensor and hence the effective coefficient. Thus there is no possibility of choice of the [\chi^{(2)}] coefficients, since a given type of phase matching is considered. In general, the largest coefficients of polar crystals, i.e. [\chi_{zzz}], are implicated at a very low level when phase matching is achieved, because the corresponding field tensor, i.e. [F_{zzz}], is often weak (Boulanger et al., 1997[link]). In contrast, QPM authorizes the coupling between three waves polarized along the z axis, which leads to an effective coefficient which is purely [\chi_{zzz}], i.e. [\chi_{\rm eff}=(2/\pi)\chi_{zzz}], where the numerical factor comes from the periodic character of the rectangular function of modulation (Fejer et al., 1992[link]).

References

Boulanger, B. (1989). Synthèse en flux et étude des propriétés optiques cristallines linéaires et non linéaires par la méthode de la sphère de KTiOPO4 et des nouveaux composés isotypes et solutions solides de formule générale (K,Rb,Cs)TiO(P,As)O4. PhD Dissertation, Université de Nancy I, France.
Boulanger, B., Fève, J. P. & Marnier, G. (1993). Field factor formalism for the study of the tensorial symmetry of the four-wave non linear optical parametric interactions in uniaxial and biaxial crystal classes. Phys. Rev. E, 48(6), 4730–4751.
Boulanger, B., Fève, J. P., Marnier, G., Bonnin, C., Villeval, P. & Zondy, J. J. (1997). Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic-generation in a single crystal cut as a sphere. J. Opt. Soc. Am. B, 14, 1380–1386.
Boulanger, B. & Marnier, G. (1991). Field factor calculation for the study of the relationships between all the three-wave non linear optical interactions in uniaxial and biaxial crystals. J. Phys. Condens. Matter, 3, 8327–8350.
Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. (1992). Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28(11), 2631–2653.
Midwinter, J. E. & Warner, J. (1965). The effects of phase matching method and of crystal symmetry on the polar dependence of third-order non-linear optical polarization. J. Appl. Phys. 16, 1667–1674.
Zyss, J. (1993). Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials. J. Chem. Phys. 98(9), 6583–6599.








































to end of page
to top of page