International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 2.2, pp. 314-333
https://doi.org/10.1107/97809553602060000912

Chapter 2.2. Electrons

K. Schwarza*

aInstitut für Materialchemie, Technische Universität Wien, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
Correspondence e-mail: kschwarz@theochem.tuwein.ac.at

References

Akai, H., Akai, M., Blügel, S., Drittler, B., Ebert, H., Terakura, K., Zeller, R. & Dederichs, P. H. (1990). Theory of hyperfine interactions in metals. Prog. Theor. Phys. Suppl. 101, 11–77.
Altmann, S. L. (1994). Band theory of solids: An introduction from the view of symmetry. Oxford: Clarendon Press.
Andersen, O. K. (1975). Linear methods in band theory. Phys. Rev. B, 12, 3060–3083.
Barth, U. von & Grossmann, G. (1979). The effect of the core hole on X-ray emission spectra in simple metals. Solid State Commun. 32, 645–649.
Barth, U. von & Hedin, L. (1972). A local exchange-correlation potential for the spin-polarized case: I. J. Phys. C, 5, 1629–1642.
Blaha, P., Schwarz, K. & Dederichs, P. H. (1988). First-principles calculation of the electric field gradient in hcp metals. Phys. Rev. B, 37, 2792–2796.
Blaha, P., Schwarz, K. & Herzig, P. (1985). First-principles calculation of the electric field gradient of Li3N. Phys. Rev. Lett. 54, 1192–1195.
Blaha, P., Schwarz, K., Sorantin, P. I. & Trickey, S. B. (1990). Full-potential linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415.
Blaha, P., Singh, D. J., Sorantin, P. I. & Schwarz, K. (1992). Electric field gradient calculations for systems with large extended core state contributions. Phys. Rev. B, 46, 5849–5852.
Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B, 50, 17953–17979.
Bouckaert, L. P., Smoluchowski, R. & Wigner, E. (1930). Theory of Brillouin zones and symmetry properties of wavefunctions in crystals. Phys. Rev. 50, 58–67.
Bradley, C. J. & Cracknell, A. P. (1972). The mathematical theory of symmetry in solids. Oxford: Clarendon Press.
Car, R. & Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474.
Ceperley, D. M. & Alder, B. J. (1984). Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–572.
Colle, R. & Salvetti, O. (1990). Generalisation of the Colle–Salvetti correlation energy method to a many determinant wavefunction. J. Chem. Phys. 93, 534–544.
Condon, E. U. & Shortley, G. H. (1953). The mathematical theory of symmetry in crystals. Cambridge University Press.
Dreizler, R. M. & Gross, E. K. U. (1990). Density functional theory. Berlin, Heidelberg, New York: Springer-Verlag.
Dufek, P., Blaha, P. & Schwarz, K. (1995a). Theoretical investigation of the pressure induced metallization and the collapse of the antiferromagnetic states in NiI2. Phys. Rev. B, 51, 4122–4127.
Dufek, P., Blaha, P. & Schwarz, K. (1995b). Determination of the nuclear quadrupole moment of 57Fe. Phys. Rev. Lett. 75, 3545–3548.
Ellis, D. E., Guenzburger, D. & Jansen, H. B. (1983). Electric field gradient and electronic structure of linear-bonded halide compounds. Phys. Rev. B, 28, 3697–3705.
Godby, R. W., Schlüter, M. & Sham, L. J. (1986). Accurate exchange-correlation potential for silicon and its discontinuity of addition of an electron. Phys. Rev. Lett. 56, 2415–2418.
Gunnarsson, O. & Lundqvist, B. I. (1976). Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formation. Phys. Rev. B, 13, 4274–4298.
Hedin, L. & Lundqvist, B. I. (1971). Explicit local exchange-correlation potentials. J. Phys. C, 4, 2064–2083.
Herzig, P. (1985). Electrostatic potentials, field gradients from a general crystalline charge density. Theoret. Chim. Acta, 67, 323–333.
Hoffmann, R. (1988). Solids and surfaces: A chemist's view of bonding in extended structures. New York: VCH Publishers, Inc.
Hohenberg, P. & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136, B864–B871.
Hybertsen, M. S. & Louie, G. (1984). Non-local density functional theory for the electronic and structural properties of semiconductors. Solid State Commun. 51, 451–454.
International Tables for Crystallography (2001). Vol. B. Reciprocal space, edited by U. Shmueli, 2nd ed. Dordrecht: Kluwer Academic Publishers.
International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
Janak, J. F. (1978). Proof that [\partial E/\partial n_i = \epsilon_i] in density-functional theory. Phys. Rev. B, 18, 7165–7168.
Kaufmann, E. N. & Vianden, R. J. (1979). The electric field gradient in noncubic metals. Rev. Mod. Phys. 51, 161–214.
Koelling, D. D. & Arbman, G. O. (1975). Use of energy derivative of the radial solution in an augmented plane wave method: application to copper. J. Phys. F Metal Phys. 5, 2041–2054.
Koelling, D. D. & Harmon, B. N. (1977). A technique for relativistic spin-polarized calculations. J. Phys. C Solid State Phys. 10, 3107–3114.
Kohn, W. & Rostocker, N. (1954). Solution of the Schrödinger equation in periodic lattice with an application to metallic lithium. Phys. Rev. 94, A1111–A1120.
Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange. Phys. Rev. 140, A1133–A1138.
Korringa, J. (1947). On the calculation of the energy of a Bloch wave in a metal. Physica, 13, 392–400.
Kurki-Suonio, K. (1977). Symmetry and its implications. Isr. J. Chem. 16, 115–123.
Loucks, T. L. (1967). Augmented plane wave method. New York, Amsterdam: W. A. Benjamin, Inc.
Methfessl, M. & Frota-Pessoa, S. (1990). Real-space method for calculation of the electric-field gradient: Comparison with K-space results. J. Phys. Condens. Matter, 2, 149–158.
Meyer, B., Hummler, K., Elsässer, C. & Fähnle, M. (1995). Reconstruction of the true wavefunction from the pseudo-wavefunctions in a crystal and calculation of electric field gradients. J. Phys. Condens. Matter, 7, 9201–9218.
Ordejon, P., Drabold, D. A., Martin, R. A. & Grumbach, M. P. (1995). Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B, 51, 1456–1476.
Parr, R., Donnelly, R. A., Levy, M. & Palke, W. A. (1978). Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807.
Perdew, J. P. (1986). Density functional theory and the band gap problem. Int. J. Quantum Chem. 19, 497–523.
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.
Perdew, J. P. & Levy, M. (1983). Physical content of the exact Kohn–Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884–1887.
Petrilli, H. M., Blöchl, P. E., Blaha, P. & Schwarz, K. (1998). Electric-field-gradient calculations using the projector augmented wave method. Phys. Rev. B, 57, 14690–14697.
Petrilli, H. M. & Frota-Pessoa, S. (1990). Real-space method for calculation of the electric field gradient in systems without symmetry. J. Phys. Condens. Matter, 2, 135–147.
Pisani, C. (1996). Quantum-mechanical ab-initio calculation of properties of crystalline materials. Lecture notes in chemistry, 67, 1–327. Berlin, Heidelberg, New York: Springer-Verlag.
Pyykkö, P. (1992). The nuclear quadrupole moments of the 20 first elements: High-precision calculations on atoms and small molecules. Z. Naturforsch. A, 47, 189–196.
Sandratskii, L. M. (1990). Symmetry properties of electronic states of crystals with spiral magnetic order. Solid State Commun. 75, 527–529.
Schwarz, K. (1977). The electronic structure of NbC and NbN. J. Phys. C Solid State Phys. 10, 195–210.
Schwarz, K., Ambrosch-Draxl, C. & Blaha, P. (1990). Charge distribution and electric field gradients in YBa2Cu3O7−x. Phys. Rev. B, 42, 2051–2061.
Schwarz, K. & Blaha, P. (1992). Ab initio calculations of the electric field gradients in solids in relation to the charge distribution. Z. Naturforsch. A, 47, 197–202.
Schwarz, K. & Blaha, P. (1996). Description of an LAPW DF program (WIEN95). In Lecture notes in chemistry, Vol. 67, Quantum-mechanical ab initio calculation of properties of crystalline materials, edited by C. Pisani. Berlin, Heidelberg, New York: Springer-Verlag.
Schwarz, K. & Herzig, P. (1979). The sensitivity of partially filled f bands to configuration and relativistic effects. J. Phys. C Solid State Phys. 12, 2277–2288.
Seitz, F. (1937). On the reduction of space groups. Ann. Math. 37, 17–28.
Singh, D. J. (1994). Plane waves, pseudopotentials and the LAPW method. Boston, Dordrecht, London: Kluwer Academic Publishers.
Skriver, H. L. (1984). The LMTO method. Springer series in solid-state sciences, Vol. 41. Berlin, Heidelberg, New York, Tokyo: Springer.
Slater, J. C. (1937). Wavefunctions in a periodic crystal. Phys. Rev. 51, 846–851.
Slater, J. C. (1974). The self-consistent field for molecules and solids. New York: McGraw-Hill.
Sorantin, P. & Schwarz, K. (1992). Chemical bonding in rutile-type compounds. Inorg. Chem. 31, 567–576.
Springborg, M. (1997). Density-functional methods in chemistry and material science. Chichester, New York, Weinheim, Brisbane, Singapore, Toronto: John Wiley and Sons Ltd.
Vosko, S. H., Wilk, L. & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations. Can. J. Phys. 58, 1200–1211.
Weinert, M. (1981). Solution of Poisson's equation: beyond Ewald-type methods. J. Math. Phys. 22, 2433–2439.
Williams, A. R., Kübler, J. & Gelatt, C. D. Jr (1979). Cohesive properties of metallic compounds: Augmented-spherical-wave calculations. Phys. Rev. B, 19, 6094–6118.
Winkler, B., Blaha, P. & Schwarz, K. (1996). Ab initio calculation of electric field gradient tensors of fosterite. Am. Mineral. 81, 545–549.