International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 2.4, pp. 349-355
https://doi.org/10.1107/97809553602060000914

Chapter 2.4. Brillouin scattering

R. Vachera* and E. Courtensa

aLaboratoire des Verres, Université Montpellier 2, Case 069, Place Eugène Bataillon, 34095 Montpellier CEDEX, France
Correspondence e-mail:  rene.vacher@ldv.univ-montp2.fr

References

Benedek, G. & Fritsch, K. (1966). Brillouin scattering in cubic crystals. Phys. Rev. 149, 647–662.
Born, M. & Wolf, E. (1993). Principles of optics. Sixth corrected edition. Oxford: Pergamon Press. Reissued (1999) by Cambridge University Press.
Brillouin, L. (1922). Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l'agitation thermique. Ann. Phys. Paris, 17, 88–122.
Cecchi, L. (1964). Etude interférométrique de la diffusion Rayleigh dans les cristaux – diffusion Brillouin. Doctoral Thesis, University of Montpellier.
Chantrel, H. (1959). Spectromètres interférentiels à un et deux étalons de Fabry–Perot. J. Rech. CNRS, 46, 17–33.
Connes, P. (1958). L'étalon de Fabry–Perot sphérique. J. Phys. Radium, 19, 262–269.
Cummins, H. Z. & Schoen, P. E. (1972). Linear scattering from thermal fluctuations. In Laser handbook, Vol. 2, edited by F. T. Arecchi & E. O. Schulz-Dubois, pp. 1029–1075. Amsterdam: North-Holland.
Egelstaff, P. A., Kearley, G., Suck, J.-B. & Youden, J. P. A. (1989). Neutron Brillouin scattering in dense nitrogen gas. Europhys. Lett. 10, 37–42.
Friedel, G. (1913). Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. C. R. Acad. Sci. Paris, 157, 1533–1536.
Gornall, W. S. & Stoicheff, B. P. (1970). The Brillouin spectrum and elastic constants of xenon single crystals. Solid State Commun. 8, 1529–1533.
Gross, E. (1930a). Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature (London), 126, 201–202.
Gross, E. (1930b). The splitting of spectral lines at scattering of light by liquids. Nature (London), 126, 400.
Hariharan, P. & Sen, J. (1961). Double-passed Fabry–Perot interfero­meter. J. Opt. Soc. Am. 51, 398–399.
Hayes, W. & Loudon, R. (1978). Scattering of light by crystals. New York: Wiley.
Hercher, M. (1968). The spherical mirror Fabry–Perot interferometer. Appl. Opt. 7, 951–966.
Mach, J. E., McNutt, D. P., Roessler, F. L. & Chabbal, R. (1963). The PEPSIOS purely interferometric high-resolution scanning spectrometer. I. The pilot model. Appl. Opt. 2, 873–885.
Nelson, D. F. & Lax, M. (1971). Theory of photoelastic interaction. Phys. Rev. B, 3, 2778–2794.
Nelson, D. F., Lazay, P. D. & Lax, M. (1972). Brillouin scattering in anisotropic media: calcite. Phys. Rev. B, 6, 3109–3120.
Pine, A. S. (1972). Thermal Brillouin scattering in cadmium sulfide: velocity and attenuation of sound; acoustoelectric effects. Phys. Rev. B, 5, 2997–3003.
Sandercock, J. R. (1971). The design and use of a stabilised multipassed interferometer of high contrast ratio. In Light scattering in solids, edited by M. Balkanski, pp. 9–12. Paris: Flammarion.
Sandercock, J. R. (1982). Trends in Brillouin scattering: studies of opaque materials, supported films, and central modes. In Light scattering in solids III. Topics in appied physics, Vol. 51, edited by M. Cardona & G. Güntherodt, pp. 173–206. Berlin: Springer.
Sette, F., Krisch, M. H., Masciovecchio, C., Ruocco, G. & Monaco, G. (1998). Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science, 280, 1550–1555.
Sussner, H. & Vacher, R. (1979). High-precision measurements of Brillouin scattering frequencies. Appl. Opt. 18, 3815–3818.
Vacher, R. (1972). Contribution à l'étude de la dynamique du réseau cristallin par analyse du spectre de diffusion Brillouin. Doctoral Thesis, University of Montpellier II.
Vacher, R. & Boyer, L. (1972). Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys. Rev. B, 6, 639–673.