Tables for
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 3.1, pp. 358-396

Chapter 3.1. Structural phase transitions

J.-C. Tolédano,d* V. Janovec,b V. Kopský,e J. F. Scottc and P. Bočeka

dEcole Polytechnique, Route de Saclay, 91128 Palaiseau CEDEX, France,bInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague 8, Czech Republic,eInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, and Department of Physics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic,cEarth Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, and aInstitute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 4, 182 08 Praha 8, Czech Republic
Correspondence e-mail:


Aizu, K. (1969). Possible species of ferroelastic crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn, 27, 387–396.
Aizu, K. (1970). Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B, 2, 754–772.
Aizu, K. (1973). Second order ferroic states. J. Phys. Soc. Jpn, 34, 121–128.
Altmann, S. L. & Herzig, P. (1994). Point-group theory tables. Oxford: Clarendon Press.
Aroyo, M. I. & Perez-Mato, J. M. (1998). Symmetry mode analysis of displacive phase transitions using International Tables for Crystallography. Acta Cryst. A54, 19–30.
Ascher, E. (1968). Lattices of equi-translation subgroups of the space groups. Geneva: Battelle.
Ascher, E. & Kobayashi, J. (1977). Symmetry and phase transitions: the inverse Landau problem. J. Phys. C: Solid State Phys. 10, 1349–1363.
Balkanski, M., Teng, M. K. & Nusimovici, M. (1969). Lattice dynamics in KNO3. Phases I, II and III. In Light scattering spectra of solids, edited by G. B. Wright, pp. 731–746. Paris: Flammarion.
Blinc, R. (1960). On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds. J. Phys. Chem. Solids, 13, 204–211.
Blinc, R., Jamsek-Vilfan, M., Lahajnar, G. & Hajdukovic, G. (1970). Nuclear magnetic resonance study of the ferroelectric transition in diglycine nitrate and tris-sarcosine calcium chloride. J. Chem. Phys. 52, 6407–6411.
Bradley, C. J. & Cracknell, A. P. (1972). The mathematical theory of symmetry in solids. Representation theory for point groups and space groups. Oxford: Clarendon Press.
Chan, L. Y. Y. & Geller, S. (1977). Crystal structure and conductivity of 26-silver 18-iodine tetratungstate. J. Solid State Chem. 21, 331–347.
Cochran, W. (1960). Crystal stability and the theory of ferroelectricity; Part I. Adv. Phys. 9, 387–402.
Cochran, W. (1961). Crystal stability and the theory of ferroelectricity; Part II. Piezoelectric crystals. Adv. Phys. 10, 401–420.
Cowley, R. A. (1962). Temperature dependence of a transverse optic mode in strontium titanate. Phys. Rev. Lett. 9, 159–161.
Cowley, R. A. (1964). Lattice dynamics and phase transitions mode in strontium titanate. Phys. Rev. A, 134, 981–997.
Cowley, R. A. (1970). On the dielectric properties of an anharmonic crystal. J. Phys. Soc. Jpn, 28, Suppl., 205–209.
Devonshire, A. F. (1954). Theory of ferroelectrics. Adv. Phys. 3, 85.
Dvořák, V. (1974). Improper ferroelectrics. Ferroelectrics, 7, 1–9.
Errandonea, G., Tolédano, J.-C., Litzler, A., Schneck, J., Savary, H. & Aubrée, J. (1984). Kinetic characteristics of the thermal hysteresis in an incommensurate system. J. Phys. Lett. 45, L329–L334.
Fleury, P. A., Scott, J. F. & Worlock, J. M. (1968). Soft phonon modes and the 110 K phase transition in strontium titanate. Phys. Rev. Lett. 21, 16–19.
Fox, D. L., Scott, J. F. & Bridenbaugh, P. M. (1976). Soft modes in ferroelastic LaP5O14 and NdP5O14. Solid State Commun. 18, 111–113.
Geller, S. & Bala, V. B. (1956). Crystallographic studies of perovskite-like compounds. II. Rare earth alluminates. Acta Cryst. 9, 1019–1024.
Geller, S., Wilber, S. A., Ruse, G. F., Akridge, J. R. & Turkovic, A. (1980). Anisotropic electrical conductivity and low-temperature phase transitions of the solid electrolyte Ag26I18W4O16. Phys. Rev. B, 21, 2506–2512.
Greer, A. L., Habbal, F., Scott, J. F. & Takahashi, T. (1980). Specific heat anomalies and phase transitions in the solid electrolyte Ag26I18W4O16. J. Chem. Phys. 73, 5833–5867.
Habbal, F., Zvirgzds, J. A. & Scott, J. F. (1978). Raman spectra of structural phase transitions in Ag26I18W4O16. J. Chem. Phys. 69, 4984–4989.
Habbal, F., Zvirgzds, J. A. & Scott, J. F. (1980). Ferroelectric phase transition in the superionic conductor Ag26I18W4O16. J. Chem. Phys. 72, 2760–2763.
Huang, C. Y., Dries, L. T., Hor, P. H., Meng, R. I., Chu, C. W. & Frankel, R. B. (1987). Observation of possible superconductivity at 230 K. Nature (London), 238, 403–404.
Hulm, J. K. (1950). The dielectric properties of some alkaline earth titanates at low temperatures. Proc. Phys. Soc. London Ser. A, 63, 1184–1185.
Hulm, J. K. (1953). Low-temperature properties of cadmium and lead niobates. Phys. Rev. 92, 504.
IEEE Standard on Piezoelectricity STD 176–1987. (1987). New York: The Institute of Electrical and Electronics Engineers, Inc. This IEEE Std 176–1987 is reproduced in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. (1996). 43, No. 5.
Indenbom, V. L. (1960). Phase transitions without change in the number of atoms in the unit cell of the crystal. Sov. Phys. Crystallogr. 5, 105–115.
International Tables for Crystallography (2004). Vol. A1. Symmetry relations between space groups, edited by H. Wondratschek & U. Müller. Dordrecht: Kluwer Academic Publishers.
International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn. Heidelberg: Springer.
Izyumov, Yu. A. & Syromiatnikov, V. N. (1990). Phase transitions and crystal symmetry. Dordrecht: Kluwer Academic Publishers.
Janovec, V., Dvořák, V. & Petzelt, J. (1975). Symmetry classification and properties of equi-translation structural phase transitions. Czech. J. Phys. B25, 1362–1396.
Jansen, L. & Boon, M. (1967). Theory of finite groups. Applications in physics. Symmetry groups of quantum mechanical systems. Amsterdam: North-Holland.
Kociński, J. (1983). Theory of symmetry changes at continuous phase transitions. Warsaw: PWN – Polish Scientific Publishers; Amsterdam: Elsevier.
Kociński, J. (1990). Commensurate and incommensurate phase transitions. Warsaw: PWN – Polish Scientific Publishers; Amsterdam: Elsevier.
Kopský, V. (1976a). The use of the Clebsch–Gordan reduction of the Kronecker square of the typical representation in symmetry problems of crystal physics. I. Theoretical foundations. J. Phys. C: Solid State Phys. 9, 3391–3405.
Kopský, V. (1976b). The use of the Clebsch–Gordan reduction of the Kronecker square of the typical representation in symmetry problems of crystal physics. II. Tabulation of Clebsch–Gordan products for classical and magnetic crystal point groups. J. Phys. C: Solid State Phys. 9, 3405–3420.
Kopský, V. (1979a). Tensorial covariants of the 32 crystal point groups. Acta Cryst. A35, 83–95.
Kopský, V. (1979b). A simplified calculation and tabulation of tensorial covariants for magnetic point groups belonging to the same Laue class. Acta Cryst. A35, 95–101.
Kopský, V. (1979c). Extended integrity bases of irreducible matrix groups. The crystal point groups. J. Phys. A: Math. Gen. 12, 943–957.
Kopský, V. (1979d). Representation generating theorem and interaction of improper quantities with order parameter. J. Phys. A. Math. Gen. 12, L291–L294.
Kopský, V. (1982). Group lattices, subduction of bases and fine domain structures for magnetic crystal point groups. Prague: Academia.
Kopský, V. (2000). The change of tensor properties at ferroic phase transitions. Ferroelectrics, 237, 127–134.
Kopský, V. (2001). Tensor parameters of ferroic phase transitions. I. Theory and tables. Phase Transit. 73, No. 1–2, 1–422.
Koster, G. F., Dimmock, J. O., Wheeler, R. E. & Statz, H. (1963). Properties of the 32 groups. Cambridge: MIT Press.
Kozlov, G. V.., Volkov, A. A., Scott, J. F. & Petzelt, J. (1983). Millimeter wavelength spectroscopy of the ferroelectric phase transition in tris-sarcosine calcium chloride. Phys. Rev. B, 28, 255–261.
Laegreid, T., Fossheim, K., Sandvold, E. & Juisrud, S. (1987). Specific heat anomaly at 220 K connected with superconductivity at 90 K in ceramic YBa2Cu3O7−x. Nature (London), 330, 637–638.
Landau, L. D. (1937). Theory of phase transitions. I. Phys. Z. Sowjun. 11, 26–47; II. Phys. Z. Sowjun. 11, 545–555.
Landau, L. D. & Lifshitz, E. M. (1969). Course in theoretical physics, Vol. 5, Statistical physics, 2nd ed. Oxford: Pergamon Press.
Levanyuk, A. P. & Sannikov, D. G. (1974). Improper seignetoelectrics. Uspekhi Fiz. Nauk. 112, 561–589. (In Russian.)
Lines, M. E. & Glass, A. M. (1977). Principles and applications of ferroelectrics and related materials. Oxford University Press.
Lytle, F. W. (1964). X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212–2214.
Lyubarskii, G. Ya. (1960). The application of group theory in physics. Oxford: Pergamon Press.
MacFarlane, R. M., Rosen, H. & Seki, H. (1987). Temperature dependence of the Raman spectra of the high-Tc superconductor YBa2Cu3O7−x. Solid State Commun. 63, 831–834.
Nimmo, J. K. & Lucas, D. W. (1973). The crystal structures of [\gamma]- and [\beta]-KNO3 and the [\alpha\leftarrow\gamma\leftarrow\beta] phase transformations. Acta Cryst. B32, 1968–1971.
Nowick, A. S. (1995). Crystal properties via group theory. Cambridge University Press.
Nye, J. F. (1985). Physical properties of crystals. Oxford: Clarendon Press.
Oliver, W. F. (1990). PhD thesis, University of Colorado.
Patera, J., Sharp, R. T. & Winternitz, P. (1978). Polynomial irreducible tensors for point groups. J. Math. Phys. 19, 2362–2376.
Peercy, P. S. (1975a). Soft mode and coupled modes in the ferroelectric phase of KH2PO4. Solid State Commun. 16, 439–442.
Peercy, P. S. (1975b). Measurement of the soft mode and coupled modes in the paraelectric and ferroelectric phases of KH2PO4. Phys. Rev. B, 12, 2741–2746.
Pick, R. (1969). Private communication.
Prokhorova, S. D., Smolensky, G. A., Siny, I. G., Kuzminov, E. G., Mikvabia, V. D. & Arndt, H. (1980). Light scattering study of the phase transition in tris-sarcosine calcium chloride. Ferroelectrics, 25, 629–632.
Rebane, L., Fimberg, T. A., Fefer, E. M., Blumberg, G. E. & Joon, E. R. (1988). Raman scattering study of lattice instability in YBa2Cu3O7−x at 200–240 K. Solid State Commun. 65, 1535–1537.
Rousseau, D. L., Bauman, R. P. & Porto, S. P. S. (1981). Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290.
Schneck, J. (1982). Thèse de Doctorat d'Etat ès Sciences Physiques, Université Pierre et Marie Curie (Paris).
Schneck, J., Primot, J., Von der Muhl, R. & Ravez, J. (1977). New phase transition with increasing symmetry on cooling in barium sodium niobate. Solid State Commun. 21, 57–60.
Scott, J. F. (1969). Raman study of trigonal–cubic phase transitions in rare-earth aluminates. Phys. Rev. 183, 823–825.
Scott, J. F. (1999). A comparison of Ag- and proton-conducting ferroelectrics. Solid State Ionics, 125, 141–146.
Scott, J. F. & Pouligny, B. (1988). Raman spectroscopic study of submicron KNO3 films. J. Appl. Phys. 64, 1547–1551.
Scott, J. F. & Remeika, J. P. (1970). High-temperature Raman study of SmAlO3. Phys. Rev. B, 1, 4182–4185.
Shannon, R. D. & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Cryst. B25, 925–945.
Shapiro, S. M., Cowley, R. A., Cox, D. E., Eibschutz, M. & Guggenheim, H. J. (1976). Neutron scattering study of incommensurate BaMnF4. In Proc. Natl Conf. Neutron Scat. edited by R. M. Moon, pp. 399–406. Springfield, VA: Nat. Tech. lnfo. Serv.
Shawabkeh, A. & Scott, J. F. (1989). Raman spectra of low-temperature phase transitions in RbAg4I5. J. Raman Spectrosc. 20, 277–281.
Shawabkeh, A. & Scott, J. F. (1991). Raman spectroscopy of incommensurate Ba2NaNb5O15. Phys. Rev. B, 43, 10999–11004.
Shinnaka, Y. (1962). X-ray study on the disordered structure above the ferroelectric Curie point in KNO3. J. Phys. Soc. Jpn, 17, 820–828.
Shuvalov, L. A. (1988). Editor. Modern crystallography IV. Physical properties of crystals. Berlin: Springer-Verlag.
Sirotin, Yu. I. & Shaskolskaya, M. P. (1982). Fundamentals of crystal physics. Moscow: Mir Publishers.
Spencer, E. G., Guggenheim, H. J. & Kominiak, G. J. (1970). BaMnF4, a new crystal for microwave ultrasonics. Appl. Phys. Lett. 17, 300–301.
Stokes, H. T. & Hatch, D. M. (1988). Isotropy groups of the 230 crystallographic space groups. Singapore: World Scientific.
Strukov, B. A. & Levanyuk, A. P. (1998). Ferroelectric phenomena in crystals. Berlin: Springer.
Tahvonen, P. E. (1947). X-ray structure of potassium nitrate. Ann. Acad. Sci. Fenn. Ser. A, 44–51.
Tokunaga, M. (1987). Two different mechanisms of the Curie–Weiss dielectric susceptibility in displacive-type ferroelectrics. J. Phys. Soc. Jpn, 56, 1653–1656.
Tolédano, J.-C., Schneck, J. & Errandonea, G. (1986). Incommensurate phase of barium sodium niobate. In Incommensurate phases in dielectric materials, edited by R. Blinc & A. P. Levanyuk, pp. 233–252. Amsterdam: North-Holland.
Tolédano, J.-C. & Tolédano, P. (1980). Order parameter symmetries and free-energy expansions for purely ferroelastic transitions. Phys. Rev. B, 21, 1139–1172.
Tolédano, J.-C. & Tolédano, P. (1987). The Landau theory of phase transitions. Singapore: World Scientific.
Tolédano, P. & Dmitriev, V. (1996). Reconstructive phase transitions. Singapore: World Scientific.
Tolédano, P. & Tolédano, J.-C. (1976). Order parameter symmetries for ferroelectric nonferroelastic transitions. Phys. Rev. B, 14, 3097–3109.
Tolédano, P. & Tolédano, J.-C. (1977). Order parameter symmetries for the phase transitions of nonmagnetic secondary and higher order ferroics. Phys. Rev. B, 16, 386–407.
Tolédano, P. & Tolédano, J.-C. (1982). Non-ferroic phase transitions. Phys. Rev. B, 25, 1946–1964.
Unoki, H. & Sakudo, T. (1967). Electron spin resonance of Fe+3 in strontium titanate with specific reference to the 110 K phase transition. J. Phys. Soc. Jpn, 23, 546–552.
Van der Waals, J. D. (1873). PhD thesis, University of Leiden.
Volkov, A. A., Kozlov, G. V., Mirzoyants, G. I. & Petzelt, J. (1985). Submicron dielectric spectroscopy of superionic conductors. Jpn. J. Appl. Phys. 24, Suppl. 24–2, 531–533.
Wadhawan, V. K. (2000) Introduction to ferroic materials. Australia: Gordon and Breach Science Publishers.
Wang, Y., Shen, H., Zhu, J., Xu, Z., Gu, M., Niu, Z. & Zhang, Z. (1987). Ultrasonic anomaly in YBa2Cu3O7−x at 235 K. J. Phys. Condens. Mat. 20, L665.
Weiss, P. (1907). L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Radium, 6, 661–690.
Weitzenböck, R. (1923). Invariantentheorie. Groningen: Noordhof.
Western, A. B., Baker, A. G., Bacon, C. R. & Schmidt, V. H. (1978). Pressure-induced critical point in the ferroelectric phase transition in KH2PO4. Phys. Rev. B, 17, 4461–4473.
Weyl, H. (1946). The classical groups. Princeton: UP.
Windsch, W. & Volkel, G. (1980). EPR investigation of the dynamics of ferroelectric tris-sarcosine calcium chloride. Ferroelectrics, 24, 195–202.
Wondre, F. R. (1977). Unpublished. Cited in Scott, J. F. (1978). Spectroscopy of magnetoelectric BaMnF4 and ferroelastic NdP5O14. Ferroelectrics, 20, 69–74.
Worlock, J. M. (1971). Light scattering studies of structural phase transitions. In Structural phase transitions and soft modes, edited by E. Samuelsen, E. Andersen & Z. Feder, pp. 329–370. Oslo: Universitetsforlaget.
Zhang, M.-S., Chen, Q., Sun, D., Ji, R.-F., Qin, Z.-K., Yu, Z. & Scott, J. F. (1988). Raman studies of phonon anomalies at 235 K in YBa2Cu3O7−x. Solid State Commun. 65, 487–490; see also Huang et al. (1987[link]).