Tables for
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 3.3, pp. 413-487

Chapter 3.3. Twinning of crystals

Th. Hahna* and H. Klapperb

aInstitut für Kristallographie, Rheinisch–Westfälische Technische Hochschule, D-52056 Aachen, Germany, and bMineralogisch-Petrologisches Institut, Universität Bonn, D-53113 Bonn, Germany
Correspondence e-mail:


Abrahams, S. C. (1994). Structure relationship to dielectric, elastic and chiral properties. Acta Cryst. A50, 658–685.
Aizu, K. (1969). Possible species of `ferroelastic' crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn, 27, 387–396.
Aizu, K. (1970a). Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B, 2, 754–772.
Aizu, K. (1970b). Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J. Phys. Soc. Jpn, 28, 706–716.
Aizu, K. (1973). Second-order ferroic state shifts. J. Phys. Soc. Jpn, 34, 121–128.
Amelinckx, S., Gevers, R. & Van Landuyt, J. (1978). Editors. Diffraction and Imaging Techniques in Materials Science, Vol. I. Electron Microscopy, especially pp. 107–151. Amsterdam: North-Holland.
Aminoff, G. & Broomé, B. (1931). Strukturtheoretische Studien über Zwillinge I. Z. Kristallogr. 80, 355–376.
Arlt, G. (1990). Twinning in ferroelectric and ferroelastic ceramics: stress relief. J. Mater. Sci. 25, 2655–2666.
Armbruster, Th. (1981). On the origin of sagenites: structural coherency of rutile with hematite and spinel structure types. Neues Jahrb. Mineral. Monatsh. pp. 328–334.
Arnold, H. (2005). Transformations in crystallography. Part 5 of International Tables for Crystallography, Vol. A, Space-Group Symmetry, edited by Th. Hahn, 5th ed., pp. 82, 84. Heidelberg: Springer
Arzruni, A. (1887). Ein neues Zwillingsgesetz im regulären System. Proc. Russ. Mineral. Soc. St. Petersburg, 23, 126–132. (In German.)
Authier, A. (2001). Dynamical Theory of X-ray Diffraction, ch. 17, X-ray diffraction topography, pp. 513–570. IUCr Monographs in Crystallography 11. Oxford University Press.
Authier, A. & Sauvage, M. (1966). Dislocations de macle dans la calcite: interférences entre les champs d'onde créés à la traversée d'une lamelle de macle. J. Phys. Rad. (France), 27, 137–142.
Barber, D. J. & Wenk, H.-R. (1979). Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Phys. Chem. Miner. 5, 141–165.
Bärnighausen, H. (1980). Group–subgroup relations between space groups: a useful tool in crystal chemistry. Match, 9, 139–175.
Barrett, C. S. & Massalski, T. B. (1966). Structure of Metals, 3rd ed., especially pp. 406–414. New York: McGraw-Hill.
Bartels, H. & Follner, H. (1989). Crystal growth and twin formation of gypsum. Cryst. Res. Technol. 24, 1191–1196.
Baruchel, J. (2004). Synchroton radiation X-ray imaging: a tool for crystal growth. In Crystal Growth – from Fundamentals to Technology, pp. 345–367. Edited by G. Müller, J.-J. Metois & P. Rudolph. Amsterdam: Elsevier.
Baumhauer, H. (1879). Über künstliche Kalkspath-Zwillinge nach -1/2R. Z. Kristallogr. 3, 588–591.
Becke, F. (1911). Über die Ausbildung der Zwillingskristalle. Fortschr. Mineral. Kristallogr. Petrogr. 1, 48–65.
Berry, L. G. & Mason, B. (1959). Mineralogy, p. 373. San Francisco: W. H. Freeman and Co.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Cryst. 36, 1487.
Billiet, Y. & Bertaut, E. F. (2005). Isomorphic subgroups of space groups. Part 13 of International Tables for Crystallography, Vol. A. Space-Group Symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
Bismayer, U., Röwer, R. W. & Wruck, B. (1995). Ferroelastic phase transition and renormalization effect in diluted lead phosphate, (Pb1−xSrx)3(PO4)2 and (Pb1−xBax)3(PO4)2. Phase Transit. 55, 169–179.
Black, P. J. (1955). The structure of FeAl3. II. Acta Cryst. 8, 175–182.
Blackburn, J. & Salje, E. K. H. (1999). Time evolution of twin domains in cordierite: a computer simulation study. Phys. Chem. Miner. 26, 275–296.
Bloss, F. D. (1971). Crystallography and Crystal Chemistry, pp. 324–338. New York: Holt, Rinehart & Winston.
Bögels, G., Buijnsters, J. G., Verhaegen, S. A. C., Meekes, H., Bennema, P. & Bollen, D. (1999). Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth, 203, 554–563.
Bögels, G., Meekes, H., Bennema, P. & Bollen, D. (1998). The role of {100} side faces for lateral growth of tabular silver bromide crystals. J. Cryst. Growth, 191, 446–454.
Bögels, G., Pot, T. M., Meekes, H., Bennema, P. & Bollen, D. (1997). Side-face structure and growth mechanism of tabular silver bromide crystals. Acta Cryst. A53, 84–94.
Bollmann, W. (1970). Crystal Defects and Crystalline Interfaces. Ch. 12, pp. 143–148. Berlin: Springer.
Bollmann, W. (1982). Crystal Lattices, Interfaces, Matrices, pp. 111–249. Geneva: published by the author.
Bonner, W. A. (1981). InP synthesis and LEC growth of twin-free crystals. J. Cryst. Growth, 54, 21–31.
Böttcher, P., Doert, Th., Arnold, H. & Tamazyan, R. (2000). Contributions to the crystal chemistry of rare-earth chalcogenides. I. The compounds with layer structures LnX2. Z. Kristallogr. 215, 246–253.
Boulesteix, C. (1984). A survey of domains and domain walls generated by crystallographic phase transitions causing a change of the lattice. Phys. Status Solidi A, 86, 11–42.
Boulesteix, C., Yangui, B., Ben Salem, M., Manolakis, C. & Amelinckx, S. (1986). The orientation of interfaces between a prototype phase and its ferroelastic derivatives: theoretical and experimental studies. J. Phys. 47, 461–471.
Boulliard, J.-Cl. (2010). Le cristal et ses doubles. Paris: CNRS Èditions. (In French.) ISBN: 978–2–271–07049–4.
Bowen, K. & Tanner, B. K. (1998). High-Resolution X-ray Diffraction and Topography. London, Bristol: Taylor & Francis.
Bragg, W. L. (1924). The structure of aragonite. Proc. R. Soc. London Ser. A, 105, 16–39.
Bragg, W. L. (1937). Atomic Structure of Minerals. Ithaca, NY: Cornell University Press.
Bragg, W. L. & Claringbull, G. F. (1965). The Crystalline State, Vol. IV. Crystal Structures of Minerals, p. 302. London: Bell & Sons.
Brauns, R. von (1891). Die optischen Anomalien der Krystalle. Leipzig: S. Hirzel.
Brewster, D. (1818). On the optical properties of muriate of soda, fluate of lime, and the diamond, as exhibited in their action upon polarised light. Trans. R. Soc. Edinburgh, pp. 157–164.
Bringhurst, K. N. & Griffin, D. T. (1986). Staurolite–lukasite series. II. Crystal structure and optical properites of a cobaltoan staurolite. Am. Mineral. 71, 1466–1472.
Brögger, W. C. (1890). Hydrargillit. Z. Kristallogr. 16, second part, pp. 16–43, especially pp. 24–43 and Plate 1.
Bueble, S., Knorr, K., Brecht, E. & Schmahl, W. W. (1998). Influence of the ferroelastic twin domain structure on the 100 surface morphology of LaAlO3 HTSC substrates. Surface Sci. 400, 345–355.
Bueble, S. & Schmahl, W. W. (1999). Mechanical twinning in calcite considered with the concept of ferroelasticity. Phys. Chem. Miner. 26, 668–672.
Buerger, M. J. (1934). The lineage structure of crystals. Z. Kristallogr. 89, 195–220.
Buerger, M. J. (1945). The genesis of twin crystals. Am. Mineral. 30, 469–482.
Buerger, M. J. (1960a). Crystal Structure Analysis, especially ch. 3. New York: Wiley.
Buerger, M. J. (1960b). Introductory remarks. Twinning with special regard to coherence. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 3 and 5–7. Madrid: CSIC.
Burbank, R. D. & Evans, H. T. (1948). The crystal structure of hexagonal barium titanate. Acta Cryst. 1, 330–336.
Burgers, W. G. (1927). Investigation of the molecular arrangement of uniaxial optically active crystals. Proc. R. Soc. London Ser. A, 116, 553–585, especially pp. 555–561.
Burgers, W. G. (1932). Cause of twinning of crystals. Nature (London), 129, 363–364.
Bury, P. C. & McLaren, A. C. (1969). Pyroelectric properties of rubidium, caesium and thallium nitrates. Phys. Status Solidi B, 31, 799–806.
Buseck, P. R., Cowley, J. M. & Eyring, L. (1992). Editors. High-Resolution Transmission Electron Microscopy and Associated Techniques, especially ch. 11. New York: Oxford University Press.
Cahn, R. W. (1954). Twinned crystals. Adv. Phys. 3, 363–445.
Catti, M. & Ferraris, G. (1976). Twinning by merohedry and X-ray crystal structure determination. Acta Cryst. A32, 163–165.
Chalmers, A. F. (1970). Curie's principle. Brit. J. Philos. Sci. 21, 133–148.
Chalmers, B. (1959). Physical Metallurgy, especially ch. 4.4. New York: Wiley.
Chernysheva, M. A. (1950). Mechanical twinning in crystals of Rochelle salt. Dokl. Akad. Nauk SSSR, 74, 247–249. (In Russian.)
Chernysheva, M. A. (1951). Effects of an electric field on the twinned structure of Rochelle salt. Dokl. Akad. Nauk SSSR, 81, 1965–1968. (In Russian.)
Chernysheva, M. A. (1955). Twinning Phenomena in Crystals of Rochelle Salt. PhD thesis, Moscow. (In Russian.)
Christian, J. W. (1965). The Theory of Transformations in Metals and Alloys, especially chs. 8 and 20. Oxford: Pergamon.
Chung, H., Dudley, M., Larson, D. J., Hurle, D. T. J., Bliss, D. F. & Prasad, V. (1998). The mechanism of growth-twin formation in zincblende crystals: insights from a study of magnetic-liquid encapsulated Czochralski grown InP single crystals. J. Cryst. Growth, 187, 9–17.
Chung, S. J. (1972). Tetraedergerüste bei Fluoberyllaten und Sulfaten (Struktur, Polymorphie, Mischkristalle). PhD thesis, RWTH Aachen, Germany.
Cottrell, A. H. (1955). Theoretical Structural Metallurgy, 2nd ed., especially ch. 14.5. London: Edward Arnold.
Curie, P. (1894). Sur la symétrie des phénomènes physique: symétrie d'un champ électrique et d'un champ magnétique. J. Phys. 3, 393–415.
Curien, H. (1960). Sur les axes de macle d'ordre supérieur à deux. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 9–11. Madrid: CSIC.
Curien, H. & Donnay, J. D. H. (1959). The symmetry of the complete twin. Am. Mineral. 44, 1067–1071.
Curien, H. & Le Corre, Y. (1958). Notation des macles à l'aide du symbolisme des groupes de couleurs de Choubnikov. Bull. Soc. Fr. Minéral. Cristallogr. 81, 126–132.
Daneu, N., Schmid, H., Rečnik, A. & Mader, W. (2007). Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil). Am. Mineral. 92, 1789–1799.
Devouard, B., Pósfai, M., Hua, X., Bazylinski, D. A., Frankel, R. B. & Buseck, P. R. (1998). Magnetite from magnetotactic bacteria: size distributions and twinning. Am. Mineral. 83, 1387–1398.
Docherty, R., El-Korashy, A., Jennissen, H.-D., Klapper, H., Roberts, K. J. & Scheffen-Lauenroth, T. (1988). Synchrotron Laue topography studies of pseudo-hexagonal twinning. J. Appl. Cryst. 21, 406–415.
Donnay, G. & Donnay, J. D. H. (1974). Classification of triperiodic twins. Can. Mineral. 12, 422–425.
Donnay, J. D. H. (1952). Cryolite twins. Am. Mineral. 37, 230–234.
Donnay, J. D. H. & Donnay, G. (1972). Crystal geometry, Section 3 (pp. 99–158). In International Tables for X-ray Crystallography, Vol. II, Mathematical Tables, edited by J. C. Kasper & K. Lonsdale. Birmingham: Kynoch Press.
Donnay, J. D. H. & Donnay, G. (1983). The staurolite story. Tschermaks Mineral. Petrogr. Mitt. 31, 1–15.
Dudley, M., Raghothamachar, B., Guo, Y., Huang, X. R., Chung, H., Hurle, D. T. J. & Bliss, D. F. (1998). The influence of polarity on twinning in zincblende structure crystals: new insights from a study of magnetic liquid-encapsulated Czochralski-grown InP crystals. J. Cryst. Growth. 192, 1–10.
Dunitz, J. D. (1964). The interpretation of pseudo-orthorhombic diffraction patterns. Acta Cryst. 17, 1299–1304.
Eitel, M. & Bärnighausen, H. (1968). Programm zur Verfeinerung von Strukturen verzwillingter Kristalle. Universität Karlsruhe, Germany.
Ellner, M. (1995). Polymorphic phase transformation of Fe4Al13 causing multiple twinning with decagonal pseudo-symmetry. Acta Cryst. B51, 31–36.
Ellner, M. & Burkhardt, U. (1993). Zur Bildung von Drehmehrlingen mit pentagonaler Pseudosymmetrie beim Erstarrungsvorgang des Fe4Al13. J. Alloy. Compd. 198, 91–100.
Engel, G., Klapper, H., Krempl, P. & Mang, H. (1989). Growth twinning in quartz-homeotypic gallium orthophosphate crystals. J. Cryst. Growth, 94, 597–606.
Ernst, E. (1928). Über den Versuch zur Bestimmung der Kristallklasse des Pentaerythrits. Z. Kristallogr. 68, 139–149.
Ernst, F., Finnis, M. W., Koch, A., Schmidt, C., Straumal, B. & Gust, W. (1996). Structure and energy of twin boundaries in copper. Z. Metallkd. 87, 911–922.
Ferraris, G. (2004). Modularity at crystal-scale twinning. In Crystallography of Modular Materials, edited by G. Ferraris, E. Makovicky & St. Merlino, ch. 5, pp. 280–308. Oxford University Press.
Flack, H. D. (1983). On enantiomorph-polarity estimation. Acta Cryst. A39, 876–881.
Flack, H. D. (1987). The derivation of twin laws for (pseudo-)merohedry by coset decomposition. Acta Cryst. A43, 564–568.
Fleming, S. D., Parkinson, G. M. & Rohl, A. L. (1997). Predicting the occurrence of reflection twins. J. Cryst. Growth, 178, 402–409.
Force, E. R., Richards, R. P., Scott, K. M., Valentine, P. C. & Fishman, N. S. (1996). Mineral intergrowths replaced by `elbow-twinned' rutile in altered rocks. Can. Mineral. 34, 605–614.
Fousek, J. & Janovec, V. (1969). The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135–142.
Friedel, G. (1904). Etude sur les groupements cristallins. Extrait du Bulletin de la Société d' Industrie Minérale, Quatrième Série, Tomes III et IV. Saint Etienne: Imprimerie Théolier J. et Cie.
Friedel, G. (1923). Sur les macles du quartz. Bull. Soc. Fr. Minéral. Cristallogr. 46, 79–95.
Friedel, G. (1926). Lecons de cristallographie, ch. 15. Nancy, Paris, Strasbourg: Berger-Levrault. [Reprinted (1964). Paris: Blanchard].
Friedel, G. (1928). Au sujet d'un mémoire de M.W.G. Burgers sur les cristaux uniaxes à pouvoir rotatoire. Compt. Rend. 186, 1788–1790.
Friedel, G. (1933). Sur un nouveau type de macles. Bull. Soc. Fr. Minéral. Cristallogr. 56, 262–274.
Friedel, J. (1964). Dislocations, especially ch. 6. Oxford: Pergamon.
Frondel, C. (1962). The System of Mineralogy, 7th ed., Vol. III. Silica Minerals, especially pp. 75–99. New York: Wiley.
Gault, H. R. (1949). The frequency of twin types in quartz crystals. Am. Mineral. 34, 142–162.
Gordon, S. G. (1945). Inspection and grading of quartz. Am. Mineral. 30, 269–290.
Gottschalk, H., Patzer, G. & Alexander, H. (1978). Stacking fault energy and ionicity of cubic III–V compounds. Phys. Status Solidi A, 45, 207–217.
Gottstein, G. (1984). Annealing texture developments by multiple twinning in fcc crystals. Acta Metall. 32, 1117–1138.
Gottstein, G. & Shvindlerman, L. S. (1999). Grain Boundary Migration in Metals, ch. 2, pp. 105–123. Boca Raton, London, New York, Washington DC: CRC Press.
Grassl, M., Barz, R.-U. & Gille, P. (2000). Etch studies on GaPO4 single crystals. J. Crystal Growth, 220, 522–530.
Grimmer, H. (1989a). Systematic determination of coincidence orientations for all hexagonal lattices with axial ratio c/a in a given interval. Acta Cryst. A45, 320–325.
Grimmer, H. (1989b). Coincidence orientations of grains in rhombo­hedral materials. Acta Cryst. A45, 505–523.
Grimmer, H. (2003). Determination of all misorientations of tetragonal lattices with low multiplicity; connection with Mallard's rule of twinning. Acta Cryst. A59, 287–296.
Grimmer, H. (2006). Quartz aggregates revisited. Acta Cryst. A62, 103–108.
Grimmer, H. & Delley, B. (2012). Density functional calculations of polysynthetic Brazil twinning in α-quartz. Acta Cryst. A68, 359–365.
Grimmer, H. & Nespolo, M. (2006). Geminography – the crystallography of twins. Z. Kristallogr. 221, 28–50.
Groth, P. (1910). Chemische Krystallographie, Vol. III, p. 385. Leipzig: W. Engelmann Verlag.
Guzei, I., Herbst-Irmer, R., Munyaneza, A. & Darkwa, J. (2012). Detailed example of the identification and crystallographic analysis of a pseudo-merohedrally twinned crystal. Acta Cryst. B68, 150–157.
Hahn, F. & Massa, W. (1997). TWINXL, Programm zur Aufbereitung von Datensätzen verzwillingter Kristalle. Phillips-Universität, Germany (e-mail:
Hahn, Th. (2005). Editor. International Tables for Crystallography, Vol. A, Space-Group Symmetry, 5th ed. Heidelberg: Springer.
Hahn, Th., Janovec, V. & Klapper, H. (1999). Bicrystals, twins and domain structures – a comparison. Ferroelectrics, 222, 11–21.
Hahn, Th. & Klapper, H. (2005). Point groups and crystal classes. Part 10 in International Tables for Crystallography, Vol. A, Space-Group Symmetry, edited by Th. Hahn, 5th ed. Heidelberg: Springer.
Hardouin-Duparc, O. B. M. (2011). A review of some elements in the history of grain boundaries, centred on Georges Friedel, the coincident `site' lattice and the twin index. J. Mater. Sci. 46, 4116–4134.
Hartman, P. (1956). On the morphology of growth twins. Z. Kristallogr. 107, 225–237.
Hartman, P. (1960). Epitaxial aspects of the atacamite twin. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 15–18. Madrid: CSIC.
Hawthorne, F. C., Ungaretti, L., Oberto, R., Cauci, F. & Callegari, A. (1993). The crystal-chemistry of staurolite I, II, III. Can. Mineral. 31, 551–616.
Heide, F. (1928). Die Japaner-Zwillinge des Quarzes und ihr Auftreten im Quarzporphyr von Saubach i. V. Z. Kristallogr. 66, 239–281.
Henke, H. (2003). Crystal structures, order–disorder transition and twinning of the Jahn–Teller system (NO)2VCl6. Z. Kristallogr. 218, 617–625.
Herbst-Irmer, R. (2006). Twinning. In Crystal Structure Refinement, edited by P. Müller, ch. 7, pp. 106–149. Oxford University Press.
Herbst-Irmer, R. & Sheldrick, G. M. (1998). Refinement of twinned structures with SHELXL97. Acta Cryst. B54, 443–449.
Herbst-Irmer, R. & Sheldrick, G. M. (2002). Refinement of obverse/reverse twins. Acta Cryst. B58, 477–481.
Herbstein, F. H. (1965). Twinned crystals. III. γ-o-Nitroaniline. Acta Cryst. 19, 590–595 (with references to Parts I and II).
Herting-Agthe, S. (1999). Von Gittern, Ringen und Visieren: Zwillinge von Rutil und Zinnstein; Aragonit & Co; and Von Kreuzen, Speeren und Schwalbenschwänzen. In Von Ammoniten und Zwillingen, Themenheft Münchener Mineralientage 1999, pp. 55–59, 65–78 and 70–78, respectively.
Herting-Agthe, S. (2009). Mineralogical Collections of the Technical University of Berlin. Personal communication.
Hildmann, B. O. (1980). Ferroelektrische–ferroelastische Eigenschaften, Phaseumwandlungen und Kristallstrukturen von NH4LiSO4. PhD Thesis, RWTH Aachen University, Germany.
Hoffmann, D. & Ernst, F. (1994). Twin boundaries with 9R zone in Cu and Ag studied by quantitative HRTEM. Interface Sci. 2, 201–210.
Hoffmann, E., Donnay, G. & Donnay, J. D. H. (1973). Symmetry and twinning of phillipsite and harmotome. Am. Mineral. 58, 1105.
Hofmeister, H. (1998). Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3–25, especially Section 4.
Hofmeister, H. & Junghans, T. (1993). Multiple twinning in the solid phase. Crystallisation of amorphous germanium. Mater. Sci. Forum, 113–115, 631–636.
Holser, W. T. (1958). Relation of structure to symmetry in twinning. Z. Kristallogr. 110, 250–265.
Holser, W. T. (1960). Relation of pseudosymmetry to structure in twinning. In Symposium on twinning. Cursillos y Conferencias, Fasc. VII, pp. 19–30. Madrid: CSIC.
Hornstra, J. (1959). Models of grain boundaries in the diamond lattice I. Physica, 25, 409–422.
Hornstra, J. (1960). Models of grain boundaries in the diamond lattice II. Physica, 26, 198–208.
Hurle, D. T. J. (1995). A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III–V compound semiconductors. J. Cryst. Growth, 147, 239–250.
Hurle, D. T. J. & Rudolph, P. (2004). A brief history of defect formation, segregation, faceting and twinning in melt-grown semiconductors. J. Cryst. Growth, 264, 550–564.
Hurst, V. J., Donnay, J. D. H. & Donnay, G. (1956). Staurolite twinning. Mineral. Mag. 31, 145–163.
Ikeno, S., Maruyama, H. & Kato, N. (1968). X-ray topographic studies of NaCl crystals grown from aqueous solution with Mn ions. J. Cryst. Growth, 3/4, 683–693.
Iliescu, B. & Chirila, R. (1995). Electrical twinning of quartz by temperature gradient. Cryst. Res. Technol. 30, 231–235.
Iliescu, B., Enculescu, I. & Chirila, R. (1997). Dynamics of the Dauphiné twins in quartz crystals up to the transition point. Ferroelectrics, 190, 119–124.
Janovec, V. (1972). Group analysis of domains and domain pairs. Czech. J. Phys. B, 22, 974–994.
Janovec, V. (1976). A symmetry approach to domain structures. Ferroelectrics, 12, 43–53.
Janovec, V. (2003). Personal communication.
Jennissen, H.-D. (1990). Phasenumwandlungen und Defektstrukturen in Kristallen mit tetraedrischen Baugruppen. PhD thesis, Institut für Kristallographie, RWTH Aachen.
Jia, C. L. & Thust, A. (1999). Investigations of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieved electron microscopy. Phys. Rev. Lett. 82, 5052–5055.
Johnsen, A. (1907). Tschermak's Zwillingstheorie und das Gesetz der Glimmerzwillinge. Centralbl. Mineral. Geolog. Palaeontol. pp. 400–409, especially p. 407.
Jona, F. & Shirane, G. (1962). Ferrolectric Crystals, ch. VII, pp. 280–317. Oxford: Pergamon Press.
Judd, J. W. (1888). The development of a lamellar structure in quartz crystals by mechanical means. Mineral. Mag. 8, 1–9 and Plate I.
Kahlenberg, V. (1999). Application and comparison of different tests on twinning by merohedry. Acta Cryst. B55, 745–751.
Kahlenberg, V. & Messner, T. (2001). TWIN3.0 – a program for testing twinning by merohedry. J. Appl. Cryst. 34, 405.
Kahr, B. & McBride, J. M. (1992). Optically anomalous crystals. Angew. Chem. Int. Ed. Engl. 31, 1–26.
Keester, K. L., Housley, R. M. & Marshall, D. B. (1988). Growth and characterization of large YBa2Cu3O7−x single crystals. J. Cryst. Growth, 91, 295–301.
Kelly, A. & Groves, G. W. (1970). Crystallography and Crystal Defects, especially chs. 10 and 12.5. London: Longman.
Klapper, H. (1973). Röntgentopographische Untersuchungen am Lithiumformiat-Monohydrat. Z. Naturforsch. A, 28, 614–622.
Klapper, H. (1987). X-ray topography of twinned crystals. In Progress in Crystal Growth and Characterization, Vol. 14, edited by P. Krishna. pp. 367–401. Oxford: Pergamon.
Klapper, H. & Hahn, Th. (2010). The application of eigensymmetries of face forms to anomalous scattering and twinning by merohedry in X-ray diffraction. Acta Cryst. A66, 327–346.
Klapper, H. & Hahn, Th. (2012). The application of eigensymmetries of face forms to X-ray diffraction intensities of crystals twinned by `reticular merohedry'. Acta Cryst. A68, 82–109.
Klapper, H., Hahn, Th. & Chung, S. J. (1987). Optical, pyroelectric and X-ray topographic studies of twin domains and twin boundaries in KLiSO4. Acta Cryst. B43, 147–159. Erratum: Acta Cryst. B43, >406.
Klapper, H., Jennissen, H.-D., Scherf, Chr. & Hahn, Th. (2008). X-ray topographic and polarisation-optical study of the low-temperature phase transitions and domain structures of KLiSO4. Ferroelectrics, 376, 25–45.
Klapper, H., Roberts, K. J., Götz, D. & Herres, N. (1983). X-ray topographic investigations of phase transitions in crystals. J. Cryst. Growth, 65, 621–636.
Klassen-Neklyudova, M. V. (1964). Mechanical Twinning of Crystals. New York: Consultants Bureau.
Klein, C. & Hurlbut, C. S. Jr (1993). Manual of Mineralogy (after James D. Dana), 21st ed., pp. 381–382 and Figs. 11.12, 11.13. New York: John Wiley & Sons.
Koch, E. (2004). Twinning. In International Tables for Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, edited by E. Prince, 3rd ed., ch. 1.3. Dordrecht: Kluwer Academic Publishers.
Kohn, J. A. (1956). Twinning in diamond-type structures: high-order twinning in silicon. Am. Mineral. 41, 778–784.
Kohn, J. A. (1958). Twinning in diamond-type structures: a proposed boundary-structure model. Am. Mineral. 43, 263–284.
Koňák, Č., Kopský, V. & Smutný, F. (1978). Gyrotropic phase transitions. J. Phys. Solid State Phys. 11, 2493–2518.
Kotrbova, M., Kadeckova, S., Novak, J., Bradler, J., Smirnov, G. V. & Shvydko, Yu. V. (1985). Growth and perfection of flux-grown FeBO3 and 57FeBO3 crystals. J. Cryst. Growth, 71, 607–614.
Krafczyk, S., Jacobi, H. & Follner, H. (1994). Twinning of crystals as a result of differences between symmetrically and energetically most favourable structure arrangements. I. Cryst. Res. Technol. 29, 623–631.
Krafczyk, S., Jacobi, H. & Follner, H. (1996). Twinning of crystals due to differences between the most favourable symmetric and energetic structural arrangements. II. Cryst. Res. Technol. 31, 55–61.
Krafczyk, S., Jacobi, H. & Follner, H. (1997). Twinning of crystals as a result of differences between symmetrical and energetically most favourable structure arrangements. III. Cryst. Res. Technol. 32, 163–173, and references cited therein.
Kundt, A. (1883). Ueber eine einfache Methode zur Untersuchung der Thermo-, Actino- und Piezoelectricität der Krystalle. Ann. Phys. 20, 592–603.
Kundt, A. & Blasius, E. (1886). Bemerkungen über Untersuchungen der Pyroelectricität der Krystalle. Ann. Phys. 28, 145–153.
Lal, K. (1993). High resolution X-ray diffraction studies of real structure of nearly perfect single crystals. Bull. Mater. Sci. 16, 617–642.
Lan, Z., Lai, X., Roberts, K. J. & Klapper, H. (2014). X-ray topographic and polarization-optical study of inversion twinning of NaClO3 crystals grown from aqueous solution with dithionate additive. Cryst. Growth Des. In preparation.
Lang, A. R. (1959). The projection topograph: a new method in X-ray diffraction microradiography. Acta Cryst. 12, 249–250.
Lang, A. R. (1965). Mapping Dauphiné and Brazil twins in quartz by X-ray topography. Appl. Phys. Lett. 7, 168–170.
Lang, A. R. (1967a). Some recent applications of X-ray topography. Adv. X-ray Anal. 10, 91–107.
Lang, A. R. (1967b). Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution. In Crystal Growth, edited by H. S. Peiser, pp. 833–838. (Supplement to Phys. Chem. Solids.) Oxford: Pergamon Press.
Lang, A. R. (1978). Techniques and interpretation in X-ray topography. In Diffraction and Imaging Techniques in Materials Science, 2nd ed., edited by S. Amelincks, R. Gevers & J. Van Landuyt, pp. 623–714. Amsterdam: North-Holland
Lang, A. R. (2004). Topography. In International Tables for Crystallography, Vol. C, 3rd ed., edited by E. Prince, ch. 2.7, pp. 113–123. Dordrecht: Kluwer Academic Publishers.
Lang, A. R. & Miuskov, V. F. (1969). Defects in natural and synthetic quartz. In Growth of Crystals, edited by N. N. Sheftal, Vol. 7, 112–123. New York: Consultants Bureau.
Le Page, Y. (1999). Low obliquity in pseudo-symmetry of lattices and structures, and in twinning by pseudo-merohedry. Acta Cryst. A55, Supplement. Abstract M12.CC001.
Le Page, Y. (2002). Mallard's law recast as a Diophantine system: fast and complete enumeration of possible twin laws by [reticular] [pseudo] merohedry. J. Appl. Cryst. 35, 175–181.
Lee, W.-Y., Bristowe, P. D., Gao, Y. & Merkle, K. L. (1993). The atomic structure of twin boundaries in rutile. Philos. Mag. Lett. 68, 309–314.
Lieber, W. (2002). Personal communication.
Lieberman, H. F., Williams, L., Davey, R. J. & Pritchard, R. G. (1998). Molecular configuration at the solid–solid interface: twinning in saccharine crystals. J. Am. Chem Soc. 120, 686–691.
Liebisch, Th. (1891). Physikalische Kristallographie. Leipzig: Veit & Comp.
McLaren, A. C. (1986). Some speculations on the nature of high-angle grain boundaries in quartz rocks. In Mineral and Rock Deformation: Laboratory Studies, edited by B. E. Hobbs & H. C. Heard. Geophys. Monogr. 36, 233–245.
McLaren, A. C. (1991). Transmission Electron Microscopy of Minerals and Rocks. Cambridge University Press.
McLaren, A. C. & Phakey, P. P. (1966). Electron microscope study of Brazil twin boundaries in amethyst quartz. Phys. Status Solidi, 13, 413–422.
McLaren, A. C. & Phakey, P. P. (1969). Diffraction contrast from Dauphiné twin boundaries in quartz. Phys. Status Solidi, 31, 723–737.
Mallard, E. (1879). Traité de cristallographie, géométrie et physique. Vol. I. Paris: Dunod.
Massa, W. (2004). Crystal Structure Determination, 2nd ed., pp. 148–156. Berlin: Springer.
Menzer, G. (1955). Über Kristallzwillingsgesetze. Z. Kristallogr. 106, 193–198.
Ming, N. B. & Sunagawa, I. (1988). Twin lamellae as possible self-perpetuating step sources. J. Cryst. Growth, 87, 13–17.
Moore, M. (1995). Synchroton radiation topography. Radiat. Phys. Chem. 45, 427–444.
Mügge, O. (1883). Beiträge zur Kenntnis der Structurflächen des Kalkspathes. Neues Jahrb. Mineral. 81, 32–54.
Mügge, O. (1905). Neues Jahrb. Mineral. Geol. Paläont. Bd II, pp. 161–167. No title, presents a critical review (in German) of several papers published by G. Friedel on the lattice theory of twinning (Friedel, G. [1904]. Compt. Rend. 139, pp. 221, 314, 373, 465, 484, 618).
Mügge, O. (1911). Über die Zwillingsbildung der Kristalle. Fortschr. Mineral. Kristallogr. Petrogr. 1, 18–47.
Müller, W. F., Wolf, Th. & Flükiger, R. (1989). Microstructure of superconducting ceramics of YBa2Cu3O7−x. Neues Jahrb. Mineral. Abh. 161, 41–67.
Nassau, K., Levinstein, H. J. & Lociano, G. M. (1965). The domain structure and etching of ferroelectric lithium niobate. Appl. Phys. Lett. 6, 228–229.
Nespolo, M. (2004). Twin point group and the polychromatic symmetry of twins. Z. Kristallogr. 219, 57–71.
Nespolo, M. & Ferraris, G. (2003). Geminography – The science of twinning applied to the early-stage derivation of non-merohedric twin laws. Z. Kristallogr. 218, 178–181.
Nespolo, M. & Ferraris, G. (2005). Hybrid twinning – a cooperative type of crystal association. Z. Kristallogr. 220, 317–323.
Nespolo, M. & Ferraris, G. (2006). The derivation of twin laws in non-merohedric twins. Application to the analysis of hybrid twins. Acta Cryst. A62, 336–349.
Nespolo, M. & Ferraris, G. (2007a). Hybrid twinning in staurolite. Acta Cryst. A63, s267–s268.
Nespolo, M. & Ferraris, G. (2007b). Overlooked problems in manifold twins: twin misfit in zero-obliquity TLQS twinning and twin index calculation. Acta Cryst. A63, 278–286.
Nespolo, M., Ferraris, G. & Takeda, H. (2000). Twins and allotwins of basic mica polytypes: theoretical derivation and identification in the reciprocal space. Acta Cryst. A56, 132–148.
Nespolo, M., Ferraris, G., Takeda, H. & Takeuchi, Y. (1999). Plesiotwinning: oriented crystal associations based on a large coincidence-site lattice. Z. Kristallogr. 214, 378–382.
Nespolo, M., Kogure, T. & Ferraris, G. (1999). Allotwinning: oriented crystal association of polytypes – some warnings on consequences. Z. Kristallogr. 214, 5–8.
Nespolo, M., Takeda, H. & Ferraris, G. (1997). Crystallography of mica polytypes. In EMU Notes in Mineralogy, edited by St. Merlino, Vol. 1, ch. 2, pp. 81–118. Budapest: Eötvos University Press.
Neumann, W., Hofmeister, H., Conrad, D., Scheerschmidt, K. & Ruvimov, S. (1996). Characterization of interface structures in nanocrystalline germanium by means of high-resolution electron microscopy and molecular dynamics simulation. Z. Kristallogr. 211, 147–152.
Newnham, R. E. (1975). Structure–Property Relations, pp. 106–107. Berlin: Springer.
Niggli, P. (1919). Geometrische Kristallographie des Diskontinuums, especially pp. 551–560. Leipzig: Gebrüder Borntraeger. [Reprinted (1973). Wiesbaden: Sändig].
Niggli, P. (1920/1924/1941). Lehrbuch der Mineralogie und Kristallchemie, 1st ed. 1920, 2nd ed. 1924, 3rd ed., Part I, 1941, especially pp. 136–153, 401–415. Berlin: Gebrüder Borntraeger.
Niggli, P. (1942). Lehrbuch der Mineralogie, 3rd ed, Part II. Berlin: Gebrüder Borntraeger.
Niizeki, N., Yamada, T. & Toyoda, H. (1967). Growth ridges, etch hillocks and crystal structure of lithium niobate. Jpn. J. Appl. Phys. 6, 318–327.
Palmer, D. C., Putnis, A. & Salje, E. K. H. (1988). Twinning in tetragonal leucite. Phys. Chem. Mineral. 16, 298–303.
Pearson, G. L. & Feldmann, W. L. (1958). Powder-pattern techniques for delineating ferroelectric domain structures. J. Phys. Chem. Solids, 9, 28–30.
Penn, R. L. & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nano-crystalline TiO2. Am. Mineral. 83, 1077–1082.
Penn, R. L. & Banfield, J. F. (1999). Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am. Mineral. 84, 871–876.
Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA: Crystallographic Computing System for Standard and Modulated Structures. . (This website contains also a number of manuscripts on twinning.)
Phakey, P. P. (1969). X-ray topographic study of defects in quartz. I. Brazil twin boundaries. Phys. Status Solidi, 34, 105–119.
Phillips, F. C. (1971). An Introduction to Crystallography, 4th ed. London: Longman.
Porter, D. A. & Easterling, K. E. (1992). Phase Transformations in Metals and Alloys, 2nd ed., especially ch. 3. London: Chapman & Hall.
Putnis, A. (1992). Introduction to Mineral Sciences, especially chs. 7.3 and 12.4. Cambridge University Press.
Putnis, A. & Salje, E. K. H. (1994). Tweed microstructures: experimental observations and some theoretical models. Phase Transit. 48, 85–105.
Putnis, A., Salje, E. K. H., Redfern, S., Fyfe, C. & Strobl, H. (1987). Structural states of Mg-cordierite I: Order parameters from synchrotron X-ray and NMR data. Phys. Chem. Miner. 14, 446–454.
Queisser, H. J. (1963). Properties of twin boundaries in silicon. J. Electrochem. Soc. 110, 52–56.
Raaz, F. & Tertsch, H. (1958). Einführung in die geometrische und physikalische Kristallographie, 3rd ed. Wien: Springer.
Ramdohr, P. & Strunz, H. (1967). Klockmann's Lehrbuch der Mineralogie, 15th ed. Stuttgart: Enke.
Räuber, A. (1978). Chemistry and physics of lithium niobate. In Current Topics in Materials Science, Vol. 1, edited by E. Kaldis, pp. 548–550 and 585–587. Amsterdam: North Holland.
Read, W. T. (1953). Dislocations in Crystals, especially ch. 7. New York: McGraw-Hill.
Rečnik, A., Brulay, J., Mader, W., Kolar, D. & Rühle, M. (1994). Structural and spectroscopic investigation of the (111) twins in barium titanite. Philos. Mag. B, 70, 1021–1034.
Renninger, M. (1957). Zwei verschiedene Zwillingsgesetze bei Penta­erythrit, C(CH2OH)4. Z. Kristallogr. 108, 375–384.
Rinaldi, R., Pluth, J. J. & Smith, J. V. (1974). Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome. Acta Cryst. B30, 2426–2433.
Robert, M. C., Lefaucheux, F., Sauvage, M. & Ribet, M. (1981). Quantitative lattice parameter mapping in Sr(NO3)2 and Ba(NO3)2 crystals. J. Cryst. Growth, 52, 976–982.
Rose, G. (1868). Über die im Kalkspath vorkommenden hohlen Canäle. Abh. Königl. Akad. Wiss. Berlin, 23, 57–79.
Roth, G., Ewert, D., Heger, G., Hervieu, M., Michel, C., Raveau, B., D'Yvoire, F. & Revcolevschi, A. (1987). Phase transformation and microtwinning in crystals of the high-TC superconductor YBa2Cu3O7−x, [x \approx {\it 1.0}]. Z. Physik B, 69, 21–27.
Salje, E. K. H. (1993). Phase Transformations in Ferroelastic and Co-Elastic Crystals. Cambridge University Press.
Salje, E. K. H., Buckley, A., Van Tendeloo, G., Ishibashi, Y. & Nord, G. L. (1998). Needle twins and right-angled twins in minerals: comparison between experiment and theory. Am. Mineral. 83, 811–822.
Salje, E. K. H. & Ishibashi, Y. (1996). Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys. Condens. Matter, 8, 1–19.
Salje, E. K. H., Kuscholke, B. & Wruck, B. (1985). Domain wall formation in minerals: I. Theory of twin boundary shapes in Na-feldspar. Phys. Chem. Miner. 12, 132–140.
Santoro, A. (1974). Characterization of twinning. Acta Cryst. A30, 224–231.
Sapriel, J. (1975). Domain-wall orientations in ferroelastics. Phys. Rev. B, 12, 5128–5140.
Sauvage, M. (1968). Observations de sources et de réactions entre dislocations partielles de macle sur des topographies aux rayons X. Phys. Status Solidi, 29, 725–736.
Sauvage, M. & Authier, A. (1965). Etude des bandes de croissance et des dislocations de macle dans la calcite. Bull. Soc. Fr. Minéral. Cristallogr. 88, 379–388.
Sawada, A. & Abe, R. (1967). The formation mechanism of domain etch patterns in triglycine sulfate crystals. Jpn. J. Appl. Phys. 6, 699–707.
Schaskolsky, M. & Schubnikow, A. (1933). Über die künstliche Herstellung gesetzmässiger Kristallverwachsungen des Kalialauns. Z. Kristallogr. 85, 1–16.
Scherf, Ch., Hahn, Th., Heger, G., Becker, R. A., Wunderlich, W. & Klapper, H. (1997). Optical and synchrotron radiation white-beam topographic investigation during the high-temperature phase transition of KLiSO4. Ferroelectrics, 191, 171–177.
Scherf, Ch., Hahn, Th., Heger, G., Ivanov, N. R. & Klapper, H. (1999). Imaging of inversion twin boundaries in potassium titanyl phosphate (KTP) by liquid-crystal surface decoration and X-ray diffraction topography. Philos. Trans. R. Soc. London Ser. A, 357, 2651–2658.
Schmahl, W. W., Putnis, A., Salje, E. K. H., Freeman, P., Graeme-Barber, A., Jones, R., Singh, K. K., Blunt, J., Edwards, P. P., Loran, J. & Mirza, K. (1989). Twin formation and structural modulations in ortho­rhombic and tetragonal YBa2(Cu1−xCox)3O7−δ. Philos. Mag. Lett. 60, 241–251.
Schmid, H., Burkhardt, E., Walker, E., Brixel, W., Clin, M., Rivera, J.-P., Jorda, J.-L., François, M. & Yvon, K. (1988). Polarized light and X-ray precession study of the ferroelastic domains of YBa2Cu3O7−d. Z. Phys. B, 72, 305–322.
Schubnikow, A. & Zinserling, K. (1932). Über die Schlag- und Druckfiguren und über die mechanischen Quarzzwillinge. Z. Kristallogr. 83, 243–264.
Seifert, H. (1928). Über Schiebungen am Bleiglanz. Neues Jahrb. Mineral. Geol. Palaeontol. 57, Beilage-Band, Abteilung A, Mineralogie und Petrographie, pp. 665–742.
Senechal, M. (1976). The mechanism of formation of certain growth twins of the penetration type. Neues Jahrb. Mineral. Monatsh. pp. 518–525.
Senechal, M. (1980). The genesis of growth twins. Sov. Phys. Crystallogr. 25, 520–524.
Shektman, V. Sh. (1993). Editor. The Real Structure of High-Tc Superconductors, especially ch. 3, Twins and structure of twin boundaries, by I. M. Shmyt'ko & V. Sh. Shektman. Berlin: Springer.
Sheldrick, G. M. (1997). SHELXL97. Programs for Crystal Structure Analysis (release 97–2). University of Göttingen, Germany.
Sheldrick, G. M. (2008). A short history of SHELX. Acta Cryst. A64, 112–122.
Shtukenberg, A., Punin, Y. & Kahr, B. (2007). Optically Anomalous Crystals. Heidelberg: Springer.
Shtukenberg, A. G., Punin, Yu. O., Haegele, E. & Klapper, H. (2001). On the origin of inhomogeneity of anomalous birefringence in mixed crystals: an example of alums. Phys. Chem. Miner. 28, 665–674.
Shuvalov, L. A., Dudnik, E. F. & Wagin, S. V. (1985). Domain structure geometry of real ferroelastics. Ferroelectrics, 65, 143–152.
Shuvalov, L. A. & Ivanov, N. R. (1964). Change in the optical activity of ferroelectric crystals on reversal of polarization. Sov. Phys. Crystallogr. 9, 290–299. (Kristallografiya, 9, 363–372.)
Shuvalov, L. A., Ivanov, N. R. & Sitnik, T. K. (1967). KH3(SeO3)2 crystal, a new representative of the hydroselenite family. Dielectric anomalies and twinned structures. Sov. Phys. Crystallogr. 12, 315–318.
Smith, D. J., Bursill, L. A. & Wood, G. J. (1983). High resolution electron microscopic study of tin dioxide crystals. J. Solid State Chem. 50, 51–69.
Smith, J. V. (1968). The crystal structure of staurolite. Am. Mineral. 53, 1139–1155.
Smith, J. V. (1974). Feldspar Minerals, Vol. 2, ch. 18, pp. 303–398. Berlin, Heidelberg, New York: Springer.
Sunagawa, I. & Tomura, S. (1976). Twinning in phlogopite. Am. Mineral. 61, 939–943.
Sutton, A. P. & Balluffi, R. W. (1995). Interfaces in Crystalline Materials, Section 1.5, pp. 25–41. Oxford: Clarendon Press.
Sweegers, C., van Enckevort, W. J. P., Meekes, H., Bennema, P., Hiralal, I. D. K. & Rijkeboer, A. (1999). The impact of twinning on the morphology of γ-Al(OH)3 crystals. J. Cryst. Growth, 197, 244–253.
Tagantsev, A. K., Cross, L. E. & Fousek, J. (2010). Domains in Ferroic Crystals and Thin Films, ch. 4.2, Surface etching, pp. 122–129 and ch. 4.4, Surface decoration techniques, pp. 130–142. Berlin: Springer.
Takano, Y. (1972). Classification of twins IV. Ordinary twins. J. Jpn. Assoc. Mineral. Petrogr. Econ. Geol. 67, 345–351.
Takano, Y. & Sakurai, K. (1971). Classification of twins I. Bisecting twin axes and principal twin axes. Mineral. J. (Jpn), 6, 375–382.
Takeda, H. & Donnay, J. D. H. (1965). Compound tessellations in crystal structures. Acta Cryst. 19, 474–476.
Takeuchi, Y. (1997). Tropochemical Cell-Twinning. Tokyo: Terra Scientific Publishing Company.
Tamazyan, R., Arnold, H., Molchanov, V. N., Kuzmicheva, G. M. & Vasileva, I. G. (2000a). Contribution to the crystal chemistry of rare-earth chalcogenides. II. The crystal structure and twinning of rare-earth disulfide PrS2. Z. Kristallogr. 215, 272–277.
Tamazyan, R., Arnold, H., Molchanov, V. N., Kuzmicheva, G. M. & Vasileva, I. G. (2000b). Contribution to the crystal chemistry of rare-earth chalcogenides. III. The crystal structure and twinning of SmS1.9. Z. Kristallogr. 215, 346–351.
Tanner, B. K. (1976). X-ray Diffraction Topography. Oxford: Pergamon Press.
Tanner, B. K. & Bowen, D. K. (1992). Synchroton radiation topography. Mater. Sci. Rep. 6, 371–407.
Taylor, C. A. & Underwood, F. A. (1960). A twinning interpretation of `superlattice' reflexions in X-ray photographs of synthetic klockmannite, CuSe. Acta Cryst. 13, 361–362.
Tertsch, H. (1936). Bemerkungen zur Frage der Verbreitung und zur Geometrie der Zwillingsbildungen. Z. Kristallogr. 94, 461–490.
Thomas, L. A. & Wooster, W. A. (1951). Piezocrescence - the growth of Dauphiné twinning in quartz under stress. Proc. R. Soc. London Ser. A, 208, 43–62.
Tohno, S. & Katsui, A. (1986). X-ray topographic study of twinning in InP crystals grown by the liquid-encapsulated Czochralski technique. J. Cryst. Growth, 74, 362–374.
Tsatskis, I. & Salje, E. K. H. (1996). Time evolution of pericline twin domains in alkali feldspars. A computer-simulation study. Am. Mineral. 81, 800–810.
Tschermak, G. (1884, 1905). Lehrbuch der Mineralogie, 1st ed. 1884, 6th ed. 1905. Wien: Alfred Hölder.
Tschermak, G. (1904). Einheitliche Ableitung der Kristallisations- und Zwillingsgesetze. Z. Kristallogr. 39, 433–462, especially 456–462.
Tschermak, G. & Becke, F. (1915). Lehrbuch der Mineralogie, 7th ed., pp. 93–114. Wien: Alfred Hölder.
Tsuchimori, M., Ishimasa, T. & Fukano, Y. (1992). Crystal structures of small Al-rich Fe alloy particles formed by a gas-evaporation technique. Philos. Mag. B, 66, 89–108, especially Section 4.
Van Bueren, H. G. (1961). Imperfections in Crystals, especially chs. 13.4 and 19. Amsterdam: North-Holland.
Van Tendeloo, G. & Amelinckx, S. (1974). Group-theoretical considerations concerning domain formation in ordered alloys. Acta Cryst. A30, 431–440.
Wadhawan, V. K. (1997). A tensor classification of twinning in crystals. Acta Cryst. A53, 546–555.
Wadhawan, V. K. (2000). Introduction to Ferroic Materials, ch. 7. Amsterdam: Gordon and Breach.
Wallace, C. A. & White, E. A. D. (1967). The morphology and twinning of solution-grown corundum crystals. In Crystal Growth, edited by H. S. Peiser (Supplement to Phys. Chem. Solids), pp. 431–435. Oxford: Pergamon.
Weertman, J. & Weertman, J. R. (1964). Elementary Dislocation Theory, especially ch. 5. New York: MacMillan.
Wenk, H.-R. (1976). Editor. Electron Microscopy in Mineralogy, especially ch. 2.3. Berlin: Springer.
Wondratschek, H. & Jeitschko, W. (1976). Twin domains and antiphase domains. Acta Cryst. A32, 664–666.
Wrinch, D. (1952). Twinning of cryolite. Am. Mineral. 37, 234–241.
Zheludev, I. S. (1971). Physics of Crystalline Dielectrics, Vol. 1. Crystallography and Spontaneous Polarization. New York: Plenum Press.
Zheludev, I. S. & Shuvalov, L. A. (1956). Seignettoelectric phase transitions and crystal symmetry. Kristallografiya, 1, 681–688. (In Russian.) (English translation: Sov. Phys. Crystallogr. 1, 537–542.)
Zikmund, Z. (1984). Symmetry of domain pairs and domain twins. Czech. J. Phys. B, 34, 932–949.
Zinserling, K. & Schubnikow, A. (1933). Über die Plastizität des Quarzes. Z. Kristallogr. 85, 454–461.