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dF ¼ ½NGðF1Þ : F1� ¼ jNGðF1Þj : jF1j: ð3:4:2:35Þ

The number nF of subgroups that are conjugate under G to F1 can
be calculated from the formula [see equation (3.2.3.96)]

nF ¼ ½G : NGðF1Þ� ¼ jGj : jNGðF1Þj: ð3:4:2:36Þ

The product of nF and dF is equal to the number n of ferroic
domain states,

n ¼ nFdF : ð3:4:2:37Þ

The normalizer NGðF1Þ enables one not only to determine
which domain states have the symmetry F1 but also to calculate
all subgroups that are conjugate under G to F1 (see Examples
3.2.3.22, 3.2.3.29 and 3.2.3.34 in Section 3.2.3.3).

Normalizers NGðF1Þ and the number dF of principal domain
states with the same symmetry are given in Table 3.4.2.7 for all
symmetry descents G � F1. The number nF of subgroups conju-
gate to F1 is given by nF ¼ n : dF.

All these results obtained for point-group symmetry descents
can be easily generalized to microscopic domain states and space-
group symmetry descents (see Section 3.4.2.5).

3.4.2.3. Property tensors associated with ferroic domain states

In the preceding section we derived relations for domain states
without considering their specific physical properties. Basic
formulae for the number of principal and secondary domain
states [see equations (3.4.2.11) and (3.4.2.17), respectively] and
the transformation properties of these domain states [equations
(3.4.2.12) and (3.4.2.21), respectively] follow immediately from
the symmetry groups G, F1 of the parent and ferroic phases,
respectively. Now we shall examine which components of prop-
erty tensors specify principal and secondary domain states and
how these tensor components change in different domain states.

A property tensor � is specified by its components. The number
mið�Þ of independent tensor components of a certain tensor �
depends on the point-group symmetry G of the crystal (see
Chapter 1.1). The number mcð�Þ of nonzero Cartesian (rectan-
gular) components depends on the orientation of the crystal in
the reference Cartesian coordinate system and is equal to, or
greater than, the number mið�Þ of independent tensor compo-
nents; this number mið�Þ is independent of orientation. Then
there are mcð�Þ �mið�Þ linear relations between Cartesian tensor
components. The difference mcð�Þ �mið�Þ is minimal for a
‘standard’ orientation, in which symmetry axes of the crystal are,
if possible, parallel to the axes of the reference coordinate system
[for more on this choice, see Nye (1985) Appendix B, Sirotin &
Shaskolskaya (1982), Shuvalov (1988) and IEEE Standards on
Piezoelectricity (1987)]. Even in this standard orientation, only
for point groups of triclinic, monoclinic and orthorhombic crystal
systems is the number mcð�Þ of nonzero Cartesian components of
each property tensor equal to the number mið�Þ of independent
tensor components, i.e. all Cartesian tensor components are
independent. For all other point groups mcð�Þ �mið�Þ> 0, i.e.
there are always relations between some Cartesian tensor
components. One can verify this statement for the strain tensor in
Table 3.4.2.2.

The relations between Cartesian tensor components can be
removed when one uses covariant tensor components. [Kopský
(1979); see also the manual of the the software GI?KoBo-1 and
Kopský (2001). An analogous decomposition of Cartesian
tensors into irreducible parts has been performed by Jerphagnon
et al. (1978).] Covariant tensor components are linear combina-
tions of Cartesian tensor components that transform according
to irreducible matrix representations Dð�ÞðGÞ of the group
G of the crystal (i.e. they form a basis of irreducible repre-
sentations of G; see Chapter 1.2). The number of covariant tensor

components equals the number of independent components of
the tensor �.

The advantage of expressing property tensors by covariant
tensor components becomes obvious when one considers a
change of a property tensor at a ferroic phase transition. A
symmetry descent G � F1 is accompanied by the preservation of,
or an increase of, the number of independent Cartesian tensor
components. The latter possibility can manifest itself either by the
appearance of morphic Cartesian tensor components in the low-
symmetry phase or by such changes of nonzero Cartesian
components that break some relations between tensor compo-
nents in the high-symmetry phase. This is seen in our illustrative
example of the strain tensor u. In the high-symmetry phase
with G ¼ 4z=mzmxmxy, the strain tensor has two independent
components and three nonzero components: u11 6¼ u22 ¼ u33. In
the low-symmetry phase with F1 ¼ 2xmymz, there are three
independent and three nonzero components: u11 6¼ u22 6¼ u33, i.e.
the equation u22 ¼ u33 does not hold in the parent phase. This
change cannot be expressed by a single Cartesian morphic
component.

Since there are no relations between covariant tensor
components, any change of tensor components at a symmetry
descent can be expressed by morphic covariant tensor compo-
nents, which are zero in the parent phase and nonzero in the
ferroic phase. In our example, the covariant tensor component of
the spontaneous strain is u11 � u22, which is a morphic component
since u11 � u22 ¼ 0 for the symmetry 4z=mzmxmxy but u11 � u22

6¼ 0 for symmetry 2xmymz.
Tensorial covariants are defined in an exact way in the manual

of the software GI?KoBo-1 and in Kopský (2001). Here we give
only a brief account of this notion. Consider a crystal with
symmetry G and a property tensor � with n� independent tensor
components. Let Dð�ÞðGÞ be a d�-dimensional physically irre-
ducible matrix representation of G. The Dð�Þa ðGÞ covariant of �
consists of the following d� covariant tensor components: ��a ¼
ð��a;1; �

�
a;2; . . . ; �

�
a;d�
Þ, where a = 1; 2; . . . and m ¼ n�=d� numbers

different d�-tuples formed from n� components of �. These
covariant tensor components are linear combinations of Carte-
sian components of � that transform as so-called typical variables
of the matrix representation Dð�ÞðGÞ, i.e. the transformation
properties under operations g 2 G of covariant tensor compo-
nents are expressed by matrices D�ðgÞ.

The relation between two presentations of the tensor � is
provided by conversion equations, which express Cartesian tensor
components as linear combinations of covariant tensor compo-
nents and vice versa [for details see the manual and Appendix E
of the software GI?KoBo-1 and Kopský (2001)].

Tensorial covariants for all non-equivalent physically irre-
ducible matrix representations of crystallographic point groups
and all important property tensors up to rank four are listed in
the software GI?KoBo-1 and in Kopský (2001). Thus, for
example, in Table D of the software GI?KoBo-1, or in Kopský
(2001) p. 5, one finds for the two-dimensional irreducible repre-
sentation E of group 422 the following tensorial covariants:
ðP1;P2Þ, ðd11; d22Þ, ðd12; d21Þ, ðd13; d23Þ, ðd26; d16Þ, ðd35; d34Þ.

Let us denote by �ð�Þð1Þa a tensorial covariant of � in the first
single-domain state S1. A crucial role in the analysis is played by
the stabilizer IGð�

ð�Þð1Þ
a Þ of these covariants, i.e. all operations of

the parent group G that leave �ð�Þð1Þa invariant. There are three
possible cases:

(1) If

IGð�
ð�Þð1Þ
a Þ ¼ G; ð3:4:2:38Þ

then all components of �ð�Þð1Þa that are nonzero in the parent phase
are also nonzero in the ferroic phase. All these components are
the same in all principal domain states. For important property
tensors and for all point groups G, these covariant tensor
components are listed in the main tables of the software
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GI?KoBo-1 and in Kopský (2001). The corresponding Cartesian
tensor components are available in Section 1.1.4 and in standard
textbooks (e.g. Nye, 1985; Sirotin & Shaskolskaya, 1982).

(2) If

IGð�
ð�Þð1Þ
a Þ ¼ F1; ð3:4:2:39Þ

then any of m ¼ n�=d� tensorial covariants �ð�Þa , a ¼ 1; 2; . . . ;m,
is a possible principal tensor parameter ’ð1Þ of the transition
G � F1. Any two of nf ¼ jGj : jF1j principal domain states differ
in some, or all, components of these covariants. The principal
tensor parameter ’ plays a similar symmetric (but generally
not thermodynamic) role as the order parameter � does
in the Landau theory. Only for equitranslational phase transitions
is one of the principal tensor parameters (that with the
temperature-dependent coefficient) identical with the primary
order parameter of the Landau theory (see Section 3.1.3).

(3) If

IGð�
ð�Þð1Þ
a Þ ¼ L1; F1 � L1 � G; ð3:4:2:40Þ

then �ð�Þð1Þa represents the secondary tensor parameter � (see
Section 3.1.3.2). There exist n� ¼ jGj : jL1j secondary domain
states R1; R2; . . . ; Rn�

that differ in �. Unlike in the two
preceding cases (1) and (2), several intermediate groups
L1;M2; . . . (with secondary tensor parameters �; �; . . .) that fulfil
condition (3.4.2.40) can exist.

Now we shall indicate how one can find particular property
tensors that fulfil conditions (3.4.2.39) or (3.4.2.40). The solution
of this group-theoretical task consists of three steps:

(i) For a given point-group symmetry descent G � F1, or
G � L1, one finds the representation �� that specifies the trans-
formation properties of the principal, or secondary, tensor para-
meter, which plays the role of the order parameters in a
continuum description. This task is called an inverse Landau
problem (see Section 3.1.3 for more details). The solution of this
problem is available in Tables 3.4.2.7 and 3.1.3.1, in the software
GI?KoBo-1 and in Kopský (2001), where the letters A, B signify
one-dimensional irreducible representations, and letters E and T
two- and three-dimensional ones. The dimensionality d�, or d�, of
the representation ��, or ��, specifies the maximal number of
independent components of the principal, or secondary, tensor
parameter ’, or �, respectively. ‘Reducible’ indicates that �� is a
reducible representation.

(ii) In Table 3.1.3.1 one finds in the second column, for a given
G and ��, or �� (first column), the standard variables designating
in a standardized way the covariant tensor components of the
principal, or secondary, tensor parameters (for more details see
Section 3.1.3.1 and the manual of the software GI?KoBo-1). For
two- and three-dimensional irreducible representations, this
column contains relations that restrict the values of the compo-
nents and thus reduce the number of independent components.

(iii) The association of covariant tensor components of property
tensors with standard variables is tabulated for all irreducible
representations in an abridged version in Table 3.1.3.1, in the

column headed Principal tensor parameters, and in full in the
main table of the software GI?KoBo-1 and of Kopský (2001).

Phase transitions associated with reducible representations
are treated in detail only in the software GI?KoBo-1 and in
Kopský (2001). Fortunately, these phase transitions occur rarely
in nature.

A rich variety of observed structural phase transitions can be
found in Tomaszewski (1992). This database lists 3446 phase
transitions in 2242 crystalline materials.

Example 3.4.2.4. Morphic tensor components associated with
4z=mzmxmxy � 2xmymz symmetry descent

(1) Principal tensor parameters ’ð1Þ. The representation �� that
specifies the transformation properties of the principal tensor
parameter ’ð1Þ (and for equitranslational phase transitions also
the primary order parameter �ð1Þ) can be found in the first column
of Table 3.1.3.1 for G ¼ 4z=mzmxmxy and F1 ¼ 2xmymz; the
R-irreducible representation (R-irep) �� ¼ Eu. Therefore, the
principal tensor parameter ’ð1Þ (or the primary order parameter
�ð1Þ) has two components ð’ð1Þ1 ; ’

ð1Þ
2 Þ [or ð�ð1Þ1 ; �

ð1Þ
2 )]. The standard

variables are in the second column: ðx�1 ; 0Þ. This means that only
the first component ’ð1Þ1 (or �ð1Þ1 ) is nonzero. In the column
Principal tensor parameters, one finds that ’ð1Þ1 ¼ P1 (or
�ð1Þ1 ¼ P1), i.e. one principal tensor parameter is spontaneous
polarization and the spontaneous polarization in the first domain
state S1 is PðsÞ ¼ ðP; 00Þ. Other principal tensor parameters can
be found in the software GI?KoBo-1 or in Kopský (2001), p. 185:
ðg4; 0Þ; ðd11; 0Þ; ðd12; 0Þ; ðd13; 0Þ; ðd26; 0Þ; ðd35; 0Þ (the physical
meaning of the components is explained in Table 3.4.3.5).

(2) Secondary tensor parameters �ð1Þ; �ð1Þ; . . ..
In the group lattice (group–subgroup chains) in Fig. 3.1.3.1,

one finds that the only intermediate group between 4z=mzmxmxy

and 2xmymz is L1 ¼ mxmymz. In the same table of the software
GI?KoBo-1 or in Kopský (2001), one finds �� ¼ B1g and the
following one-dimensional secondary tensor parameters: u1 � u2;
A14 þ A25; A36; s11 � s22; s13 � s23; s44 � s55; Q11 �Q22;
Q12 �Q21; Q13 �Q23; Q31 �Q32; Q44 �Q55.

The use of covariant tensor components has two practical
advantages:

Firstly, the change of tensor components at a ferroic phase
transition is completely described by the appearance of new
nonzero covariant tensor components. If needed, Cartesian
tensor components corresponding to covariant components can
be calculated by means of conversion equations, which express
Cartesian tensor components as linear combinations of covariant
tensor components [for details on tensor covariants and conver-
sion equations see the manual and Appendix E of the software
GI?KoBo-1 and Kopský (2001)].

Secondly, calculation of property tensors in various domain
states is substantially simplified: transformations of Cartesian
tensor components, which are rather involved for higher-rank
tensors, are replaced by a simpler transformation of covariant
tensor components by matrices Dð�Þ of the matrix representation
of ��, or of �� [see again the software GI?KoBo-1 and Kopský
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Table 3.4.2.4. Morphic properties, tensor parameters, order parameters and domain states

T, U, S, V: property tensors; TOP: designation of tensor or order parameter; �: representation of G expressing the transformation properties of TOP. The terms ‘full’ and
‘partial’ were introduced by Aizu (1970a).

Morphic property TOP � Stabilizer of TOP Domain states

Spontaneous components of tensor T ’ �’ F1 Principal (full) in tensor T

Spontaneous components of tensor U  �’ F1 Principal (full) in tensor U

Spontaneous components of tensor S � �� F1 Principal (full) in tensor S

Spontaneous components of tensor V � �� L1; F1 � L1 � G Degenerate (partial) in tensor V

Primary order parameter � �� F 1 Basic (microscopic)

Pseudoproper order parameter � �� F 1 Basic (microscopic)

Secondary (improper) order parameter � �� L1;F 1 � L1 � G Secondary (improper) microscopic
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(2001)]. The determination of the tensor properties of all domain
states is discussed in full in the book by Kopský (1982).

The relations between morphic properties, tensor parameters,
order parameters and names of domain states are summarized in
Table 3.4.2.4. Macroscopic principal domain states can be
distinguished by various property tensors that transform either
according to the same representation �’ (tensors T and U) or
different representations �’ and �� (tensors T and S). In the
microscopic description, a basic domain state may sometimes be
shared by two physically different order parameters: a primary
order parameter � (the order parameter, components of which
form a quadratic invariant with a temperature-dependent coef-
ficient in the free energy) and a pseudoproper order parameter �
that transforms according to the same representation �� as the
primary order parameter but has a temperature coefficient that is
almost independent of temperature. This is, however, rather rare
(see, e.g., Tolédano & Dmitriev, 1996).

3.4.2.4. Synoptic table of ferroic transitions and domain states

The considerations of this and all following sections can be
applied to any phase transition with point-group symmetry
descent G � F. All such non-magnetic crystallographically non-
equivalent symmetry descents are listed in Table 3.4.2.7 together
with some other data associated with symmetry reduction at a
ferroic phase transition. These symmetry descents can also be
traced in lattices of subgroups of crystallographic point groups,
which are displayed in Figs. 3.1.3.1 and 3.1.3.2.

The symmetry descents G � F1 listed in Table 3.4.2.7 are
analogous to Aizu’s ‘species’ (Aizu, 1970a), in which the symbol F
stands for the symbol � in our symmetry descent, and the
orientation of symmetry elements of the group F1 with respect to
G is specified by letters p, s, ps, pp etc. A list of 212 non-ferro-

magnetic species together with their property tensors is available
online (Janovec, 2012).

As we have already stated, any systematic analysis of domain
structures requires an unambiguous specification of the orienta-
tion and location of symmetry elements in space. Moreover, in a
continuum approach, the description of crystal properties is
performed in a rectangular (Cartesian) coordinate system, which
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Fig. 3.4.2.3. Oriented symmetry operations of the cubic group m�3m and of its
subgroups. The Cartesian (rectangular) coordinate system x; y; z is identical
with the crystallographic and crystallophysical coordinate systems. Correla-
tion with other notations is given in Table 3.4.2.5.

Table 3.4.2.5. Symbols of symmetry operations of the point group m�3m

Standard: symbols used in Section 3.1.3, in the present chapter and in the software; all symbols refer to the cubic crystallographic (Cartesian) basis, p � ½111� (all
positive), q � ½�1�11�; r � ½1�1�1�; s � ½�11�1�. BC: Bradley & Cracknell (1972). AH: Altmann & Herzig (1994). IT A: IT A (2005). Jones: Jones’ faithful representation
symbols express the action of a symmetry operation on a vector ðxyzÞ (see e.g. Bradley & Cracknell, 1972).

Standard BC AH IT A Jones Standard BC AH IT A Jones

1 or e E E 1 x; y; z �1 or i I i �1 0; 0; 0 �x; �y; �z

2z C2z C2z 2 0; 0; z �x; �y; z mz �z �z m x; y; 0 x; y; �z

2x C2x C2x 2 x; 0; 0 x; �y; �z mx �x �x m 0; y; z �x; y; z

2y C2y C2y 2 0; y; 0 �x; y; �z my �y �y m x; 0; z x; �y; z

2xy C2a C02a 2 x; x; 0 y; x; �z mxy �da �d1 m x; �x; z �y; �x; z

2x�y C2b C02b 2 x; �x; 0 �y; �x; �z mx�y �db �d2 m x; x; z y; x; z

2zx C2c C02c 2 x; 0; x; z; �y; x mzx �dc �d3 m �x; y; x; �z; y; �x

2z�x C2e C02e 2 �x; 0; x �z; �y; �x mz�x �de �d5 m x; y; x z; y; x

2yz C2d C02d 2 0; y; y �x; z; y myz �dd �d4 m x; y; �y x; �z; �y

2y�z C2f C02f 2 0; y; �y �x; �z; �y my�z �df �d6 m x; y; y x; z; y

3p Cþ31 Cþ31 3þ x; x; x z; x; y �3p S�61 S�61
�3
þ

x; x; x �z; �x; �y

3q Cþ32 Cþ32 3þ �x; �x; x �z; x; �y �3q S�62 S�62
�3
þ

�x; �x; x z; �x; y

3r Cþ33 Cþ33 3þ x; �x; �x �z; �x; y �3r S�63 S�63
�3
þ

x; �x; �x z; x; �y

3s Cþ34 Cþ34 3þ �x; x; �x z; �x; �y �3s S�64 S�64
�3
þ

�x; x; �x �z; x; y

32
p C�31 C�31 3� x; x; x y; z; x �3

5

p Sþ61 Sþ61
�3
�

x; x; x �y; �z; �x

32
q C�32 C�32 3� �x; �x; x y; �z; �x �3

5

q Sþ62 Sþ62
�3
�

�x; �x; x �y; z; x

32
r C�33 C�33 3� x; �x; �x �y; z; �x �3

5

r Sþ63 Sþ63
�3
�

x; �x; �x y; �z; x

32
s C�34 C�34 3� �x; x; �x �y; �z; x �3

5

s Sþ64 Sþ64
�3
�

�x; x; �x y; z; �x

4z Cþ4z Cþ4z 4þ 0; 0; z �y; x; z �4z S�4z S�4z
�4
þ

0; 0; z y; �x; �z

4x Cþ4x Cþ4x 4þ x; 0; 0 x; �z; y �4x S�4x S�4x
�4
þ

x; 0; 0 �x; z; �y

4y Cþ4y Cþ4y 4þ 0; y; 0 z; y; �x �4y S�4y S�4y
�4
þ

0; y; 0 �z; �y; x

43
z C�4z C�4z 4� 0; 0; z y; �x; z �4

3

z Sþ4z Sþ4z
�4
�

0; 0; z �y; x; �z

43
x C�4x C�4x 4� x; 0; 0 x; z; �y �4

3

x Sþ4x Sþ4x
�4
�

x; 0; 0 �x; �z; y

43
y C�4y C�4y 4� 0; y; 0 �z; y; x �4

3

y Sþ4y Sþ4y
�4
�

0; y; 0 z; �y; �x
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