International
Tables for Crystallography Volume D Physical properties of crystals Edited by A. Authier © International Union of Crystallography 2013 |
International Tables for Crystallography (2013). Vol. D, ch. 3.4, p. 539
Section 3.4.5. GlossaryaInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague 8, Czech Republic, and bDepartment of Mathematics and Didactics of Mathematics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic |
Note: the correspondence between contracted Greek indices and the Cartesian vector components used in Sections 3.1.3
, in the present chapter and in the software GI
KoBo-1, is defined in the following way:
In this designation, coefficients with contracted indices 4, 5, 6 appear two times, e.g. index 4 replaces yz in one coefficient and zy in the other coefficient. With this convention, the coefficients transform in tensor space as vector components, but some coefficients differ from the usual matrix notation (Voigt matrices) by numerical factors [see Section 1.1.4.10
; Nye (1985
); Sirotin & Shaskolskaya, Appendix E (1982
)].
(a) Objects
|
(b) Symmetry groups – point groups in a continuum description and space groups in a microscopic description
|
(c) Components of property tensors
References
International Tables for Crystallography (2005). Vol. A, Space-Group Symmetry, 5th ed., edited by Th. Hahn. Heidelberg: Springer.Aizu, K. (1970a). Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B, 2, 754–772.
Altmann, S. L. & Herzig, P. (1994). Point-Group Theory Tables. Oxford: Clarendon Press.
Bradley, C. J. & Cracknell, A. P. (1972). The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press.
Jona, F. & Shirane, G. (1962). Ferroelectric Crystals. Oxford: Pergamon Press.
Nye, J. F. (1985). Physical Properties of Crystals. Oxford: Clarendon Press.
Rosová, A. (1999). Real domain structure origination in (110) mechanical twinning in YBa2Cu3O7−y. In Studies of High Temperature Superconductors, Vol. 28, edited by A. Narlikar, pp. 125–148. New York: Nova Science Publishers.
Salje, E. K. H. (1990). Phase Transitions in Ferroelastic and Co-elastic Crystals, 1st ed. Cambridge University Press.
Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shishkin, E. I., Batchko, R. G., Fejer, M. M. & Byer, R. L. (2001). Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics, 257, 191–202.
Sirotin, Yu. I. & Shaskolskaya, M. P. (1982). Fundamentals of Crystal Physics. Moscow: Mir.