International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2013). Vol. D, ch. 3.4, pp. 513-514

Table 3.4.3.4 

V. Janoveca* and J. Přívratskáb

aInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague 8, Czech Republic, and bDepartment of Mathematics and Didactics of Mathematics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic
Correspondence e-mail:  janovec@fzu.cz

Table 3.4.3.4| top | pdf |
Non-ferroelastic domain pairs, domain twin laws and distinction of non-ferroelastic domains

[F_1]: symmetry of [{\bf S}_1]; [g_{1j}^{\star} ]: twinning operations of second order; [K_{1j}^{\star}]: twinning group signifying the twin law of domain pair [({\bf S}_1,g_{1j}^{\star}{\bf S}_1) ]; [J_{1j}^{\star}]: symmetry group of the pair; [\Gamma_{\alpha} ]: irreducible representation of [K_{1j}^{\star}]; [\rho], [{P}_i,\ldots], [{Q}_{{\mu\nu}} ]: components of property tensors (see Table 3.4.3.5[link]): [a|c]: number of distinct[|]equal nonzero independent tensor components of property tensors.

[F_1][g_{1j}^{\star} ][K_{1j}^{\star}=J_{1j}^{\star} ][\Gamma_{\alpha}]Diffraction intensities[\rho][{P}_i ][g_{\mu}][{d}_{i{\mu}} ][A_{i\mu}][{s}_{\mu\nu} ][{Q}_{{\mu\nu}} ]
1 [\bar1^{\star}] [\bar1^{\star}] [A_u] = [1|0] [3|0] [6|0] [18|0] [0|18] [0|21] [0|36]
[2_u] [\bar1^{\star}], [m^{\star}_u] [2_u/m_u^{\star}] [A_u] = [1|0 ] [1|0 ] [4|0 ] [8|0 ] [0|8 ] [0|13] [0|20]
[m_u] [\bar1^{\star}], [2^{\star}_u] [2_u^{\star}/m_u] [B_u] = [0|0] [2|0] [2|0] [10|0] [0|8] [0|13] [0|20]
[2_x2_y2_z] [\bar1^{\star}], [m^{\star}_x], [m^{\star}_y], [m^{\star}_z] [m_x^{\star}m_y^{\star}m_z^{\star}] [A_{u}] = [1|0 ] [0|0 ] [3|0 ] [3|0 ] [0|3 ] [0|9 ] [0|12]
[2_{x\bar{y}}2_{xy}2_z] [\bar1^{\star}], [m^{\star}_{xy} ], [m^{\star}_{x\bar{y}}], [m^{\star}_z] [m_{x\bar{y}}^{\star}m_{xy}^{\star}m_z^{\star} ] [A_{u}] [= ] [1|0 ] [0|0 ] [3|0 ] [3|0 ] [0|3 ] [0|9 ] [0|12]
[m_xm_y2_z] [\bar1^{\star}], [m^{\star}_z], [2^{\star}_x], [2^{\star}_y] [m_xm_ym_z^{\star}] [B_{1u}] [= ] [0|0 ] [1|0 ] [1|0 ] [5|0 ] [0|3 ] [0|9 ] [0|12]
[2_xm_ym_z] [\bar1^{\star}], [m^{\star}_x], [2^{\star}_y], [2^{\star}_z] [m_x^{\star}m_ym_z] [B_{1u}] = [0|0 ] [1|0 ] [1|0 ] [5|0 ] [0|3 ] [0|9 ] [0|12]
[m_x2_ym_z] [\bar1^{\star}], [m^{\star}_y], [2^{\star}_x], [2^{\star}_z] [m_xm_y^{\star}m_z] [B_{1u}] [= ] [0|0 ] [1|0 ] [1|0 ] [5|0 ] [0|3 ] [0|9 ] [0|12]
[m_{x\bar{y}}m_{xy}2_z] [\bar1^{\star}], [m^{\star}_z], [2^{\star}_{xy}], [2^{\star}_{x\bar{y}}] [m_{x\bar{y}}m_{xy}m_z^{\star}] [B_{1u}] [= ] [0|0 ] [1|0 ] [1|0 ] [5|0 ] [0|3 ] [0|9 ] [0|12]
[4_z] [\bar1^{\star}], [m^{\star}_z] [4_z/m_z^{\star}] [A_{u}] [= ] [1|0 ] [1|0 ] [2|0 ] [4|0 ] [0|4 ] [0|7 ] [0|10]
[4_z] [2_x^{\star}], [2^{\star}_y], [2^{\star}_{xy}], [2^{\star}_{x\bar y}] [4_z2_x^{\star}2_{xy}^{\star}] [A_{2}] [\not= ] [0|1 ] [1|0 ] [0|2 ] [3|1 ] [3|1 ] [1|6 ] [3|7]
[4_z] [m_x^{\star}], [m^{\star}_y], [m^{\star}_{xy}], [m^{\star}_{x\bar y}] [4_zm_x^{\star}m_{xy}^{\star}] [A_{2} ] [\not=] [1|0 ] [0|1 ] [2|0 ] [1|3 ] [3|1 ] [1|6 ] [3|7]
[\bar{4}_z ] [\bar1^{\star}], [m^{\star}_z] [4^{\star}_z/m_z^{\star}] [B_{u}] [= ] [0|0 ] [0|0 ] [2|0 ] [4|0 ] [0|4 ] [0|7 ] [0|10]
[\bar{4}_z] [m_{xy}^{\star}], [m^{\star}_{x\bar y} ], [2^{\star}_x], [2^{\star}_y] [\bar{4}_z2_x^{\star}m_{xy}^{\star}] [A_{2}] [\not= ] [0|0 ] [0|0 ] [1|1 ] [2|2 ] [3|1 ] [1|6 ] [3|7]
[\bar{4}_z] [m_x^{\star}], [m^{\star}_y], [2^{\star}_{xy}], [2^{\star}_{x\bar y}] [\bar{4}_zm_x^{\star}2_{xy}^{\star}] [A_{2}] [\not= ] [0|0 ] [0|0 ] [1|1 ] [2|2 ] [3|1 ] [1|6 ] [3|7]
[4_z/m_z] [m^{\star}_x], [m^{\star}_y], [m^{\star}_{xy}], [m^{\star}_{x\bar y}], [2_x^{\star}], [2^{\star}_y], [2^{\star}_{xy}], [ 2^{\star}_{x\bar y}] [4_z/m_zm_x^{\star}m_{xy}^{\star}] [A_{2g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [3|1 ] [1|6 ] [3|7]
[4_z2_x2_{xy} ] [\bar1^{\star}], [m^{\star}_z], [m_x^{\star}], [m^{\star}_y], [m^{\star}_{xy}], [m^{\star}_{x\bar y} ] [4_z/m_z^{\star}m_x^{\star}m_{xy}^{\star} ] [A_{1u}] [= ] [1|0 ] [0|0 ] [2|0 ] [1|0 ] [0|1 ] [0|6 ] [0|7]
[4_zm_xm_{xy}] [\bar1^{\star}], [m^{\star}_z], [2_x^{\star}], [2^{\star}_y], [2^{\star}_{xy}], [2^{\star}_{x\bar y} ] [4_z/m_z^{\star}m_xm_{xy} ] [A_{2u}] [= ] [0|0 ] [1|0 ] [0|0 ] [3|0 ] [0|1 ] [0|6 ] [0|7]
[\bar{4}_z2_xm_{xy}] [\bar1^{\star}], [m^{\star}_z], [m_x^{\star}], [m^{\star}_y], [2^{\star}_{xy}], [2^{\star}_{x\bar y} ] [4_z^{\star}/m_z^{\star}m_x^{\star}m_{xy} ] [B_{1u}] [= ] [0|0 ] [0|0 ] [1|0 ] [2|0 ] [0|1 ] [0|6 ] [0|7]
[\bar{4}_zm_x2_{xy}] [\bar1^{\star}], [m^{\star}_z], [m^{\star}_{xy}], [m^{\star}_{x\bar y}], [2_x^{\star} ], [2^{\star}_y] [4_z^{\star}/m_z^{\star}m_xm_{xy}^{\star} ] [B_{1u}] [= ] [0|0 ] [0|0 ] [1|0 ] [2|0 ] [0|1 ] [0|6 ] [0|7]
[3_v] [\bar{1}^{\star} ] [\bar{3}_v^{\star} ] [A_{u}] [= ] [1|0 ] [1|0 ] [2|0 ] [6|0 ] [0|6 ] [0|7 ] [0|12]
[3_z ] [2_x^{\star}], [2^{\star}_{x{^\prime}} ], [2^{\star}_{x{^\prime}{^\prime}}] [3_z2_x^{\star} ] [A_{2}] [\not=] [0|1 ] [1|0 ] [0|2 ] [4|2 ] [4|2] [1|6 ] [4|8]
[3_z] [2_y^{\star}], [2^{\star}_{y{^\prime}} ], [2^{\star}_{y{^\prime}{^\prime}}] [3_z2_y^{\star} ] [A_{2}] [\not=] [0|1 ] [1|0 ] [0|2 ] [4|2 ] [4|2 ] [1|6 ] [4|8]
[3_p] [2_{x\bar{y}}^{\star}], [2^{\star}_{y\bar{z}} ], [2^{\star}_{z\bar{x}}] [3_p2_{x\bar{y}}^{\star} ] [A_{2}] [\not=] [0|1 ] [1|0 ] [0|2 ] [4|2 ] [4|2] [1|6 ] [4|8]
[3_z ] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}] [3_zm_x^{\star} ] [A_{2}] [\not=] [1|0 ] [0|1 ] [2|0 ] [2|4 ] [4|2 ] [1|6 ] [4|8]
[3_z] [m_y^{\star}], [m^{\star}_{y{^\prime}} ], [m^{\star}_{y{^\prime}{^\prime}}] [3_zm_y^{\star} ] [A_{2}] [\not= ] [1|0 ] [0|1 ] [2|0 ] [2|4 ] [4|2 ] [1|6 ] [4|8]
[3_p ] [m_{x\bar{y}}^{\star}], [m^{\star}_{y\bar{z}} ], [m^{\star}_{z\bar{x}}] [3_pm_x^{\star} ] [A_{2}] [\not=] [1|0 ] [0|1 ] [2|0 ] [2|4 ] [4|2 ] [1|6 ] [4|8]
[3_z] [2_z^{\star} ] [6_z^{\star} ] B [\not=] [0|1 ] [0|1 ] [0|2 ] [2|4 ] [2|4 ] [2|5 ] [4|8]
[3_z ] [m_z^{\star} ] [\bar{6}_z^{\star} ] [A^{{^\prime}{^\prime}}] [\not= ] [1|0 ] [1|0 ] [2|0 ] [4|2 ] [2|4 ] [2|5 ] [4|8]
[\bar{3}_z] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}], [2_x^{\star} ], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}}] [\bar{3}_zm_x^{\star}] [A_{2g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [4|2 ] [1|6 ] [4|8]
[\bar{3}_z] [m_y^{\star}], [m^{\star}_{y{^\prime}} ], [m^{\star}_{y{^\prime}{^\prime}}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}}] [\bar{3}_zm_y^{\star}] [A_{2g}] [\not= ] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [4|2 ] [1|6 ] [4|8]
[\bar{3}_p ] [m_{x\bar{y}}^{\star}], [m^{\star}_{y\bar{z}} ], [m^{\star}_{z\bar{x}}], [2_{x\bar{y}}^{\star}], [2^{\star}_{y\bar{z}}], [2^{\star}_{z\bar{x}}] [\bar{3}_pm_x^{\star}] [A_{2g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [4|2 ] [1|6 ] [4|8]
[\bar{3}_z] [m^{\star}_z], [2_z^{\star}] [6_z^{\star}/m_z^{\star}] [B_{g} ] [\not= ] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [2|4 ] [2|5] [4|8]
[3_z2_x ] [\bar1^{\star}], [m_x^{\star}], [m^{\star}_{x{^\prime}}], [m^{\star}_{x{^\prime}{^\prime}}] [\bar{3}_z^{\star}m_x^{\star}] [A_{1u}] [= ] [1|0 ] [0|0] [2|0 ] [2|0 ] [0|2 ] [0|6 ] [0|8]
[3_z2_y ] [\bar1^{\star}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}}] [\bar{3}_z^{\star}m_y^{\star}] [A_{1u}] = [1|0 ] [0|0] [2|0 ] [2|0 ] [0|2 ] [0|6 ] [0|8]
[3_z2_x ] [2_z^{\star}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}}] [6_z^{\star}2_x2_y^{\star}] [B_{1}] [\not= ] [0|1 ] [0|0 ] [0|2 ] [1|1 ] [1|1 ] [1|5] [2|6]
[3_z2_y] [2_z^{\star}], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}}] [6_z^{\star}2_x^{\star}2_y ] [B_{1}] [\not=] [0|1 ] [0|0 ] [0|2 ] [1|1 ] [1|1 ] [1|5 ] [2|6]
[3_p2_{x\bar{y}}] [\bar1^{\star}], [m_{x\bar{y}}^{\star} ], [m^{\star}_{y\bar{z}}], [m^{\star}_{z\bar{x}}] [\bar{3}_p^{\star}m_x^{\star}] [A_{1u}] [= ] [1|0] [0|0 ] [2|0 ] [2|0 ] [0|2 ] [0|6 ] [0|8]
[3_z2_x ] [m_z^{\star}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}}] [\bar{6}_z^{\star}2_xm_y^{\star}] [A^{{^\prime}{^\prime}}_{1}] [\not= ] [1|0 ] [0|0] [2|0 ] [1|1 ] [1|1 ] [1|5 ] [2|6]
[3_z2_y ] [m_z^{\star}], [m_x^{\star}], [m^{\star}_{x{^\prime}}], [m^{\star}_{x{^\prime}{^\prime}}] [\bar{6}_z^{\star}m_x2_y^{\star}] [A^{{^\prime}{^\prime}}_{1}] [\not= ] [1|0 ] [0|0] [2|0 ] [1|1 ] [1|1 ] [1|5 ] [2|6]
[3_pm_{x\bar{y}} ] [\bar1^{\star}], [2_{x\bar{y}}^{\star} ], [2^{\star}_{y\bar{z}}], [2^{\star}_{z\bar{x}}] [\bar{3}_p^{\star}m_x ] [A_{2u}] = [0|0 ] [1|0 ] [0|0 ] [4|0 ] [0|2 ] [0|6 ] [0|8]
[3_zm_x ] [\bar1^{\star}], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}}] [\bar{3}_z^{\star}m_x ] [A_{2u}] = [0|0 ] [1|0 ] [0|0 ] [4|0 ] [0|2 ] [0|6 ] [0|8]
[3_zm_y] [\bar1^{\star}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}}] [\bar{3}_z^{\star}m_y ] [A_{2u}] = [0|0 ] [1|0 ] [0|0 ] [4|0 ] [0|2 ] [0|6 ] [0|8]
[3_zm_x ] [2_z^{\star}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}}] [6_z^{\star}m_xm_y^{\star} ] [B_{2}] [\not=] [0|0 ] [0|1 ] [0|0 ] [1|3 ] [1|1 ] [1|5 ] [2|6]
[3_zm_y] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}] [6_z^{\star}m_x^{\star}m_y ] [B_{2}] [\not=] [0|0 ] [0|1 ] [0|0 ] [1|3 ] [1|1 ] [1|5 ] [2|6]
[3_zm_x ] [m_z^{\star}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}}] [\bar{6}_z^{\star}m_x2_y^{\star}] [A_{2}^{{^\prime}{^\prime}}] [\not=] [0|0 ] [1|0 ] [0|0 ] [3|1 ] [1|1 ] [1|5 ] [2|6]
[3_zm_y ] [m_z^{\star}], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}}] [\bar{6}_z^{\star}2_x^{\star}m_y] [A_{2}^{{^\prime}{^\prime}}] [\not=] [0|0 ] [1|0 ] [0|0 ] [3|1 ] [1|1 ] [1|5 ] [2|6]
[\bar{3}_zm_x ] [m_z^{\star}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}}] [6_z^{\star}/m_z^{\star}m_xm_y^{\star} ] [B_{1g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [1|1 ] [1|5 ] [2|6]
[\bar{3}_zm_y ] [m_z^{\star}], [m_x^{\star}], [m^{\star}_{x{^\prime}}], [m^{\star}_{x{^\prime}{^\prime}}] [6_z^{\star}/m_z^{\star}m_x^{\star}m_y ] [B_{1g}] [\not= ] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [1|1 ] [1|5 ] [2|6]
[6_z ] [\bar1^{\star}], [m^{\star}_z] [6_z/m_z^{\star} ] [A_{u}] [= ] [1|0 ] [1|0 ] [2|0 ] [4|0 ] [0|4 ] [0|5 ] [0|8]
[6_z ] [2_x^{\star}], [2^{\star}_{x{^\prime}} ], [2^{\star}_{x{^\prime}{^\prime}}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}}] [6_z2_x^{\star}2_y^{\star} ] [A_{2}] [\not=] [0|1 ] [1|0 ] [0|2 ] [3|1 ] [3|1 ] [0|5 ] [2|6]
[6_z] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}} ] [6_zm_x^{\star}m_y^{\star} ] [A_{2}] [\not=] [1|0 ] [0|1 ] [2|0 ] [1|3 ] [3|1 ] [0|5 ] [2|6]
[\bar{6}_z ] [\bar1^{\star}], [2^{\star}_z] [6_z^{\star}/m_z ] [B_{u}] [= ] [0|0 ] [0|0 ] [0|0 ] [2|0 ] [0|4 ] [0|5 ] [0|8]
[\bar{6}_z ] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}} ] [\bar{6}_zm_x^{\star}2_y^{\star}] [A_{2}^{{^\prime}}] [\not= ] [0|0 ] [0|0 ] [0|0 ] [1|1 ] [3|1 ] [0|5 ] [2|6]
[\bar{6}_z ] [m_y^{\star}], [m^{\star}_{y{^\prime}} ], [m^{\star}_{y{^\prime}{^\prime}}], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}} ] [\bar{6}_z2_x^{\star}m_y^{\star}] [A_{2}^{{^\prime}}] [\not= ] [0|0 ] [0|0 ] [0|0 ] [1|1 ] [3|1 ] [0|5 ] [2|6]
[6_z/m_z ] [m_x^{\star}], [m^{\star}_{x{^\prime}} ], [m^{\star}_{x{^\prime}{^\prime}}], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}}], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}} ], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}} ] [6_z/m_zm_x^{\star}m_y^{\star} ] [A_{2g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [3|1 ] [0|5 ] [2|6]
[6_z2_x2_y ] [\bar1^{\star}], [m_z^{\star}], [m_x^{\star}], [m^{\star}_{x{^\prime}}], [m^{\star}_{x{^\prime}{^\prime}} ], [m_y^{\star}], [m^{\star}_{y{^\prime}}][, m^{\star}_{y{^\prime}{^\prime}} ] [6_z/m_z^{\star}m_x^{\star}m^{\star}_y ] [A_{1u}] [= ] [1|0 ] [0|0 ] [2|0 ] [1|0 ] [0|1 ] [0|5 ] [0|6]
[6_zm_xm_y ] [\bar1^{\star}], [m^{\star}_z], [2_x^{\star}], [2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}} ], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}} ] [6_z/m_z^{\star}m_xm_y ] [A_{2u}] = [0|0 ] [1|0 ] [0|0 ] [3|0 ] [0|1 ] [0|5 ] [0|6]
[\bar{6}_z2_xm_y ] [\bar1^{\star}], [2^{\star}_z], [m_x^{\star}], [m^{\star}_{x{^\prime}}], [m^{\star}_{x{^\prime}{^\prime}} ], [2_y^{\star}], [2^{\star}_{y{^\prime}}], [2^{\star}_{y{^\prime}{^\prime}} ] [6_z^{\star}/m_zm_x^{\star}m_y] [B_{2u}] [= ] [0|0 ] [0|0 ] [0|0 ] [1|0 ] [0|1 ] [0|5 ] [0|6]
[\bar{6}_zm_x2_y ] [\bar1^{\star}], [2^{\star}_z], [m_y^{\star}], [m^{\star}_{y{^\prime}}], [m^{\star}_{y{^\prime}{^\prime}} ], [2_x^{\star}, 2^{\star}_{x{^\prime}}], [2^{\star}_{x{^\prime}{^\prime}} ] [6_z^{\star}/m_zm_xm_y^{\star}] [B_{2u}] [= ] [0|0 ] [0|0 ] [0|0 ] [1|0 ] [0|1 ] [0|5 ] [0|6]
23 [\bar1^{\star}], [m_x^{\star}], [m^{\star}_y], [m^{\star}_z] [m^{\star}\bar{3} ] [A_{u}] = [1|0 ] [0|0 ] [1|0 ] [1|0 ] [0|1 ] [0|3 ] [0|4]
23 [2_{xy}^{\star}], [2_{yz}^{\star} ], [2_{zx}^{\star}], [2^{\star}_{x\bar y}], [2^{\star}_{y\bar z} ], [2^{\star}_{z\bar x}] [4^{\star}32^{\star}] [A_{2}] [\not= ] [0|1 ] [0|0 ] [0|1] [1|0 ] [1|0 ] [0|3 ] [1|3]
23 [m_{xy}^{\star}], [m_{yz}^{\star} ], [m_{zx}^{\star}], [m^{\star}_{x\bar y}], [m^{\star}_{y\bar z} ], [m^{\star}_{z\bar x}] [\bar{4}^{\star}3m^{\star} ] [A_{2}] [\not= ] [1|0 ] [0|0 ] [1|0 ] [0|1 ] [1|0 ] [0|3 ] [1|3]
[m\bar{3}] [m_{xy}^{\star}], [m_{yz}^{\star} ], [m_{zx}^{\star}], [m^{\star}_{x\bar y}], [m^{\star}_{y\bar z} ], [m^{\star}_{z\bar x}], [2^{\star}_{xy}], [2^{\star}_{yz} ], [2^{\star}_{zx}], [2^{\star}_{x\bar y}], [2^{\star}_{y\bar z} ], [2^{\star}_{z\bar x}] [m\bar{3}m^{\star}] [A_{2g}] [\not=] [0|0 ] [0|0 ] [0|0 ] [0|0 ] [1|0 ] [0|3 ] [1|3]
432 [\bar1^{\star}], [m_x^{\star}], [m^{\star}_y], [m^{\star}_z], [m_{xy}^{\star}], [m_{yz}^{\star} ], [m_{zx}^{\star}], [m^{\star}_{x\bar y}], [m^{\star}_{y\bar z} ], [m^{\star}_{z\bar x}] [m^{\star}\bar{3}m^{\star}] [A_{1u}] [= ] [1|0] [0|0] [1|0] [0|0] [0|0] [0|3] [0|3]
[\bar{4}3m ] [\bar1^{\star}], [m_x^{\star}], [m^{\star}_y], [m^{\star}_z], [2^{\star}_{xy}], [2^{\star}_{yz} ], [2^{\star}_{zx}], [2^{\star}_{x\bar y} ], [2^{\star}_{y\bar z} ], [2^{\star}_{z\bar x}] [m^{\star}\bar{3}m] [A_{2u}] [= ] [0|0] [0|0] [0|0] [1|0] [0|0] [0|3] [0|3]
[u = z,x(x{^\prime},x{^\prime}{^\prime}),y(y{^\prime},y{^\prime}{^\prime}),xy(x\bar{y},zx,z\bar{x},yz,y\bar{z}) ].
[v =z,p(q,r,s)].