
1.2. Guide to the use of the subperiodic group tables

By V. Kopský and D. B. Litvin*

This present volume is, in part, an extension of International

Tables for Crystallography, Volume A, Space-Group Symmetry

(IT A, 2005). Symmetry tables are given in IT A for the 230

three-dimensional crystallographic space-group types (space

groups) and the 17 two-dimensional crystallographic space-group

types (plane groups). We give in the following three parts of this

volume analogous symmetry tables for the two-dimensional and

three-dimensional subperiodic group types: the seven crystal-

lographic frieze-group types (two-dimensional groups with one-

dimensional translations) in Part 2; the 75 crystallographic rod-

group types (three-dimensional groups with one-dimensional

translations) in Part 3; and the 80 crystallographic layer-group

types (three-dimensional groups with two-dimensional transla-

tions) in Part 4. This chapter forms a guide to the entries of the

subperiodic group tables given in Parts 2–4.

1.2.1. Classification of subperiodic groups

Subperiodic groups can be classified in ways analogous to the

space groups. For the mathematical definitions of these classifi-

cations and their use for space groups, see Chapter 8.2 of IT A

(2005). Here we shall limit ourselves to those classifications which

are explicitly used in the symmetry tables of the subperiodic

groups.

1.2.1.1. Subperiodic group types

The subperiodic groups are classified into affine subperiodic

group types, i.e. affine equivalence classes of subperiodic groups.

There are 80 affine layer-group types and seven affine frieze-

group types. There are 67 crystallographic and an infinity of

noncrystallographic (Opechowski, 1986) affine rod-group types.

We shall consider here only rod groups of the 67 crystallographic

rod-group types. We shall refer here to these crystallographic

affine rod-group types simply as affine rod-group types and to the

crystallographic rod groups belonging to these types simply as

rod groups.

The subperiodic groups are also classified into proper affine

subperiodic group types, i.e. proper affine classes of subperiodic

groups. For layer and frieze groups, the two classifications are

identical. For rod groups, each of eight affine rod-group types

splits into a pair of enantiomorphic crystallographic rod-group

types. Consequently, there are 75 proper affine rod-group types.

The eight pairs of enantiomorphic rod-group types are p41 (R24),
p43 (R26); p4122 (R31), p4322 (R33); p31 (R43), p32 (R44); p3112
(R47), p3212 (R48); p61 (R54), p65 (R58); p62 (R55), p64 (R57);
p6122 (R63), p6522 (R67); and p6222 (R64), p6422 (R66). (Each

subperiodic group is given in the text by its Hermann–Mauguin

symbol followed in parenthesis by a letter L, R or F to denote it,

respectively, as a layer, rod or frieze group, and its sequential

numbering from Parts 2, 3 or 4.) We shall refer to the proper

affine subperiodic group types simply as subperiodic group types.

1.2.1.2. Other classifications

There are 27 geometric crystal classes of layer groups and rod

groups, and four geometric crystal classes of frieze groups. These

are listed, for layer groups, in the fourth column of Table 1.2.1.1,

and for the rod and frieze groups in the second columns of Tables

1.2.1.2 and 1.2.1.3, respectively.

We further classify subperiodic groups according to the

following classifications of the subperiodic group’s point group

and lattice group. These classifications are introduced to

emphasize the relationships between subperiodic groups and

space groups:

(1) The point group of a layer or rod group is three-

dimensional and corresponds to a point group of a three-

dimensional space group. The point groups of three-dimensional

space groups are classified into the triclinic, monoclinic, ortho-

rhombic, tetragonal, trigonal, hexagonal and cubic crystal

systems. We shall use this classification also for subperiodic

groups. Consequently, the three-dimensional subperiodic groups

are classified, see the third column of Table 1.2.1.1 and the first

column of Table 1.2.1.2, into the triclinic, monoclinic, ortho-

rhombic, tetragonal, trigonal and hexagonal crystal systems. The

cubic crystal system does not arise for three-dimensional

subperiodic groups. Two-dimensional subperiodic groups, i.e.

frieze groups, are analogously classified, see the first column of

Table 1.2.1.3, into the oblique and rectangular crystal systems.

(2) The two-dimensional lattice of a layer group is also a two-

dimensional lattice of a plane group. The lattices of plane groups

are classified, according to Bravais (flock) systems, see IT A

(2005), into the oblique, rectangular, square and hexagonal

Bravais systems. We shall also use this classification for layer

groups, see the first column in Table 1.2.1.1. For rod and frieze

groups no lattice classification is used, as all one-dimensional

lattices form a single Bravais system.

A subdivision of the monoclinic rod-group category is made

into monoclinic/inclined and monoclinic/orthogonal. Two

different coordinate systems, see Table 1.2.1.2, are used for the

rod groups of these two subdivisions of the monoclinic crystal

system. These two coordinate systems differ in the orientation of

the plane containing the non-lattice basis vectors relative to the

lattice vectors. For the monoclinic/inclined subdivision, the plane

containing the non-lattice basis vectors is, see Fig. 1.2.1.1, inclined

with respect to the lattice basis vector. For the monoclinic/

orthogonal subdivision, the plane is, see Fig. 1.2.1.2, orthogonal.

1.2.1.2.1. Conventional coordinate systems

The subperiodic groups are described by means of a crystal-

lographic coordinate system consisting of a crystallographic

origin, denoted by O, and a crystallographic basis. The basis

vectors for the three-dimensional layer groups and rod groups

are labelled a, b and c. The basis vectors for the two-dimensional

frieze groups are labelled a and b. Unlike space groups, not all

basis vectors of the crystallographic basis are lattice vectors. Like

space groups, the crystallographic coordinate system is used to

define the symmetry operations (see Section 1.2.9) and the

Wyckoff positions (see Section 1.2.11). The symmetry operations

are defined with respect to the directions of both lattice and non-

lattice basis vectors. AWyckoff position, denoted by a coordinate

triplet (x, y, z) for the three-dimensional layer and rod groups, is
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defined in the crystallographic coordinate system by O + r, where

r = xa + yb + zc. For the two-dimensional frieze groups, a Wyckoff

position is denoted by a coordinate doublet (x, y) and is defined

in the crystallographic coordinate system by O + r, where r = xa +

yb.

The term setting will refer to the assignment of the labels a, b

and c (and the corresponding directions [100], [010] and [001],

respectively) to the basis vectors of the crystallographic basis (see

Section 1.2.6). In the standard setting, those basis vectors which

are also lattice vectors are labelled as follows: for layer groups

with their two-dimensional lattice by a and b, for rod groups with

their one-dimensional lattice by c, and for frieze groups with their

one-dimensional lattice by a.
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Fig. 1.2.1.1. Monoclinic/inclined basis vectors. For the monoclinic/inclined
subdivision, �= � = 90� and the plane containing the a and b non-lattice basis
vectors is inclined with respect to the lattice basis vector c.

Table 1.2.1.1. Classification of layer groups

Bold or bold underlined symbols indicate Laue groups. Bold underlined point groups are also lattice point symmetries (holohedries).

Two-dimensional
Bravais system Symbol

Three-dimensional
crystal system

Crystallographic
point groups

No. of
layer-group
types

Restrictions on
conventional
coordinate
system

Cell parameters
to be
determined

Bravais
lattice

Oblique m Triclinic 1, �1 2 None a, b, �† mp

Monoclinic 2, m, 2/m 5 � = � = 90�

Rectangular o 11 � = � = 90� a, b op

Orthorhombic 222, 2mm, mmm 30 � = � = � = 90� oc

Square t Tetragonal 4, �4, 4/m 16 a = b a tp

422, 4mm, �42m, 4/mmm � = � = � = 90�

Hexagonal h Trigonal 3, �3 8 a = b a hp

32, 3m, �3m

Hexagonal 6, �6, 6/m 8 � = 120�

622, 6mm, �6m2, 6/mmm � = � = 90�

† This angle is conventionally taken to be non-acute, i.e. �90� .

Table 1.2.1.2. Classification of rod groups

Bold symbols indicate Laue groups.

Three-dimensional
crystal system

Crystallographic
point groups

No. of
rod-group types

Restrictions on
conventional coordinate system

Triclinic 1, �1 2 None

Monoclinic (inclined) 2, m, 2/m 5 � = � = 90�

Monoclinic (orthogonal) 5 � = � = 90�

Orthorhombic 222, 2mm, mmm 10 � = � = � = 90�

Tetragonal 4, �4, 4/m 19

422, 4mm, �42m, 4/mmm

Trigonal 3, �3 11 � = � = 90, � = 120�

32, 3m, �3m

Hexagonal 6, �6, 6/m 23

622, 6mm, �6m2, 6/mmm

Table 1.2.1.3. Classification of frieze groups

Bold symbols indicate Laue groups.

Two-dimensional crystal system Crystallographic point groups No. of frieze-group types Restrictions on conventional coordinate system

Oblique 1, 2 2 None

Rectangular m, 2mm 5 � = 90�
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The selection of a crystallographic coordinate system is not

unique. Following IT A (2005), we choose conventional crystal-

lographic coordinate systems which have a right-handed set of

basis vectors and such that symmetry of the subperiodic groups is

best displayed. The conventional crystallographic coordinate

systems used in the standard settings are given in the sixth

column of Table 1.2.1.1 for the layer groups, and the fourth

columns of Tables 1.2.1.2 and 1.2.1.3 for the rod groups and frieze

groups, respectively. The crystallographic origin is conventionally

chosen at a centre of symmetry or at a point of high site symmetry

(see Section 1.2.7).

The conventional unit cell of a subperiodic group is defined by

the crystallographic origin and by those basis vectors which are

also lattice vectors. For layer groups in the standard setting, the

cell parameters, the magnitude of the lattice basis vectors a and b,

and the angle between them, which specify the conventional cell,

are given in the seventh column of Table 1.2.1.1. The conven-

tional unit cell obtained in this manner turns out to be either

primitive or centred and is denoted by p or c, respectively, in the

eighth column of Table 1.2.1.1. For rod and frieze groups with

their one-dimensional lattices, the single cell parameter to be

specified is the magnitude of the lattice basis vector.

1.2.2. Contents and arrangement of the tables

The presentation of the subperiodic group tables in Parts 2, 3 and

4 follows the form and content of IT A (2005). The entries for a

subperiodic group are printed on two facing pages or continu-

ously on a single page, where space permits, in the following

order (deviations from this standard format are indicated on the

relevant pages):

Left-hand page:

(1) Headline;

(2) Diagrams for the symmetry elements and the general

position;

(3) Origin;

(4) Asymmetric unit;

(5) Symmetry operations.

Right-hand page:

(6) Headline in abbreviated form;

(7) Generators selected: this information is the basis for the

order of the entries under Symmetry operations and Positions;

(8) General and special Positions, with the following columns:

Multiplicity; Wyckoff letter; Site symmetry, given by the oriented

site-symmetry symbol; Coordinates; Reflection conditions;

(9) Symmetry of special projections;

(10) Maximal non-isotypic non-enantiomorphic subgroups;

(11) Maximal isotypic subgroups and enantiomorphic sub-

groups of lowest index;

(12) Minimal non-isotypic non-enantiomorphic supergroups.

1.2.2.1. Subperiodic groups with more than one description

For two monoclinic/oblique layer-group types with a glide

plane, more than one description is available: p11a (L5) and

p112/a (L7). The synoptic descriptions consist of abbreviated

treatments for three ‘cell choices’, called ‘cell choices 1, 2 and 3’

[see Section 1.2.6, (i) Layer groups]. A complete description is

given for cell choice 1 and it is repeated among the synoptic

descriptions of cell choices 2 and 3. For three layer groups, p4/n

(L52), p4/nbm (L62) and p4/nmm (L64), two descriptions are

given (see Section 1.2.7). These two descriptions correspond to

the choice of origin, at an inversion centre and on a fourfold axis.

For 15 rod-group types, two descriptions are given, corresponding

to two settings [see Section 1.2.6, (ii) Rod groups].

1.2.3. Headline

The description of a subperiodic group starts with a headline on a

left-hand page, consisting of two or three lines which contain the

following information when read from left to right.

First line:

(1) The short international (Hermann–Mauguin) symbol of the

subperiodic group type. Each symbol has two meanings. The first

is that of the Hermann–Mauguin symbol of the subperiodic group

type. The second meaning is that of a specific subperiodic group

which belongs to this subperiodic group type. Given a coordinate

system, this group is defined by the list of symmetry operations

(see Section 1.2.9) given on the page headed by that Hermann–

Mauguin symbol, or by the given list of general positions (see

Section 1.2.11). Alternatively, this group is defined by the given

diagrams (see Section 1.2.6). The Hermann–Mauguin symbols for

the subperiodic group types are distinct except for the rod- and

frieze-group types p1 (R1, F1), p211 (R3, F2) and p11m (R10, F4).

(2) The short international (Hermann–Mauguin) point group

symbol for the geometric class to which the subperiodic group

belongs.

(3) The name used in classifying the subperiodic group types.

For layer groups this is the combination crystal system/Bravais

system classification given in the first two columns of Table

1.2.1.1, and for rod and frieze groups this is the crystal system

classification in the first columns of Tables 1.2.1.2 and 1.2.1.3,

respectively.

Second line:

(4) The sequential number of the subperiodic group type.

(5) The full international (Hermann–Mauguin) symbol for the

subperiodic group type.

(6) The Patterson symmetry.

Third line:

This line is used to indicate the cell choice in the case of layer

groups p11a (L5) and p112/a (L7), the origin choice for the three

layer groups p4/n (L52), p4/nbm (L62) and p4/nmm (L64), and

the setting for the 15 rod groups with two distinct Hermann–

Mauguin setting symbols (see Table 1.2.6.2).

1.2.4. International (Hermann–Mauguin) symbols for
subperiodic groups

Both the short and the full Hermann–Mauguin symbols consist of

two parts: (i) a letter indicating the centring type of the

conventional cell, and (ii) a set of characters indicating symmetry

elements of the subperiodic group.

(i) The letters for the two centring types for layer groups are

the lower-case italic letter p for a primitive cell and the lower-case
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Fig. 1.2.1.2. Monoclinic/orthogonal basis vectors. For the monoclinic/
orthogonal subdivision, � = � = 90� and the plane containing the a and b
non-lattice basis vectors is orthogonal to the lattice basis vector c.
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italic letter c for a centred cell. For rod and frieze groups there is

only one centring type, the one-dimensional primitive cell, which

is denoted by the lower-case script letter p.
(ii) The one or three entries after the centring letter refer to

the one or three kinds of symmetry directions of the conventional

crystallographic basis. Symmetry directions occur either as

singular directions or as sets of symmetrically equivalent

symmetry directions. Only one representative of each set is given.

The sets of symmetry directions and their sequence in the

Hermann–Mauguin symbol are summarized in Table 1.2.4.1.

Each position in the Hermann–Mauguin symbol contains one

or two characters designating symmetry elements, axes and

planes that occur for the corresponding crystallographic

symmetry direction. Symmetry planes are represented by their

normals; if a symmetry axis and a normal to a symmetry plane are

parallel, the two characters are separated by a slash, e.g. the 4/m

in p4=mcc (R40). Crystallographic symmetry directions that carry

no symmetry elements are denoted by the symbol ‘1’, e.g. p3m1

(L69) and p112 (L2). If no misinterpretation is possible, entries

‘1’ at the end of the symbol are omitted, as in p4 (L49) instead of

p411. Subperiodic groups that have in addition to translations no

symmetry directions or only centres of symmetry have only one

entry after the centring letter. These are the layer-group types p1

(L1) and p�1 (L2), the rod-group types p1 (R1) and p �1 (R2), and

the frieze group p1 (F1).

1.2.5. Patterson symmetry

The entry Patterson symmetry in the headline gives the subper-

iodic group of the Patterson function, where Friedel’s law is

assumed, i.e. with neglect of anomalous dispersion. [For a

discussion of the effect of dispersion, see Fischer & Knof (1987)

and Wilson (2004).] The symbol for the Patterson subperiodic

group can be deduced from the symbol of the subperiodic group

in two steps:

(i) Glide planes and screw axes are replaced by the corre-

sponding mirror planes and rotation axes.

(ii) If the resulting symmorphic subperiodic group is not

centrosymmetric, inversion is added.

There are 13 different Patterson symmetries for the layer

groups, ten for the rod groups and two for the frieze groups.

These are listed in Table 1.2.5.1. The ‘point-group part’ of the

symbol of the Patterson symmetry represents the Laue class to

which the subperiodic group belongs (cf. Tables 1.2.1.1, 1.2.1.2

and 1.2.1.3).

1.2.6. Subperiodic group diagrams

There are two types of diagrams, referred to as symmetry

diagrams and general-position diagrams. Symmetry diagrams

show (i) the relative locations and orientations of the symmetry

elements and (ii) the locations and orientations of the symmetry

elements relative to a given coordinate system. General-position

diagrams show the arrangement of a set of symmetrically

equivalent points of general positions relative to the symmetry

elements in that given coordinate system.

For the three-dimensional subperiodic groups, i.e. layer and

rod groups, all diagrams are orthogonal projections. The

projection direction is along a basis vector of the conventional

crystallographic coordinate system (see Tables 1.2.1.1 and

1.2.1.2). If the other basis vectors are not parallel to the plane of

the figure, they are indicated by subscript ‘p’, e.g. ap, bp and cp.
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Table 1.2.4.1. Sets of symmetry directions and their positions in the Hermann–
Mauguin symbol

In the standard setting, periodic directions are [100] and [010] for the layer groups,
[001] for the rod groups, and [10] for the frieze groups.

(a) Layer groups and rod groups.

Symmetry direction (position in
Hermann–Mauguin symbol)

Primary Secondary Tertiary

Triclinic None

Monoclinic [100] [010] [001]

Orthorhombic

Tetragonal [001] ½100� ½1�10�

½010� ½110�

Trigonal [001] ½100� ½1�10�

Hexagonal ½010� ½120�

½�1�10� ½�2�10�

(b) Frieze groups.

Symmetry direction (position in
Hermann–Mauguin symbol)

Primary Secondary Tertiary

Oblique Rotation point in plane

Rectangular [10] [01]

Table 1.2.5.1. Patterson symmetries for subperiodic groups

(a) Layer groups.

Laue class Lattice type
Patterson symmetry (with
subperiodic group number)

�1 p p�1 (L2)

112/m p p112/m (L6)

2/m11 p, c p2/m11 (L14), c2/m11 (L18)

mmm p, c pmmm (L37), cmmm (L47)

4/m p p4/m (L51)

4/mmm p p4/mmm (L61)

�3 p p�3 (L66)

�31m p p�31m (L71)

�3m1 p p�3m1 (L72)

6/m p p6/m (L75)

6/mmm p p6/mmm (L80)

(b) Rod groups.

Laue class Lattice type
Patterson symmetry (with
subperiodic group number)

�1 p p �1 (R2)

2/m11 p p2/m11 (R6)

112/m p p112/m (R11)

mmm p pmmm (R20)

4/m p p4/m (R28)

4/mmm p p4/mmm (R39)

�3 p p �3 (R48)

�3m p p �31m (R51)

6/m p p6/m (R60)

6/mmm p p6/mmm (R73)

(c) Frieze groups.

Laue class Lattice type
Patterson symmetry (with
subperiodic group number)

2 p p211 (F2)

2mm p p2mm (F6)
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For frieze groups (two-dimensional subperiodic groups), the

diagrams are in the plane defined by the frieze group’s conven-

tional crystallographic coordinate system (see Table 1.2.1.3).

The graphical symbols for symmetry elements used in the

symmetry diagrams are given in Chapter 1.1 and follow those

used in IT A (2005). For rod groups, the ‘heights’ h along the

projection direction above the plane of the diagram are indicated

for symmetry planes and symmetry axes parallel to the plane of

the diagram, for rotoinversions and for centres of symmetry. The

heights are given as fractions of the translation along the

projection direction and, if different from zero, are printed next

to the graphical symbol.

Schematic representations of the diagrams, displaying their

conventional coordinate system, i.e. the origin and basis vectors,

with the basis vectors labelled in the standard setting, are given

below. The general-position diagrams are indicated by the letter

G.

(i) Layer groups

For the layer groups, all diagrams are orthogonal projections

along the basis vector c. For the triclinic/oblique layer groups, two

diagrams are given: the general-position diagram on the right and

the symmetry diagram on the left. These diagrams are illustrated

in Fig. 1.2.6.1.

For all monoclinic/oblique layer groups, except groups L5 and

L7, two diagrams are given, as shown in Fig. 1.2.6.2. For the layer

groups L5 and L7, the descriptions of the three cell choices are

headed by a pair of diagrams, as illustrated in Fig. 1.2.6.3. Each

diagram is a projection of four neighbouring unit cells. The

9

Fig. 1.2.6.1. Diagrams for triclinic/oblique layer groups.

Fig. 1.2.6.2. Diagrams for monoclinic/oblique layer groups.

Fig. 1.2.6.3. Monoclinic/oblique layer groups Nos. 5 and 7, cell choices 1, 2, 3.
The numbers 1, 2, 3 within the cells and the subscripts of the basis vectors
indicate the cell choice.

Fig. 1.2.6.4. Diagrams for monoclinic/rectangular layer groups.

Fig. 1.2.6.5. Diagrams for orthorhombic/rectangular layer groups.

Fig. 1.2.6.6. Monoclinic/rectangular and orthorhombic/rectangular layer
groups with two settings. For the second-setting symbol printed vertically,
the page must be turned clockwise by 90� or viewed from the right-hand side.

Table 1.2.6.1. Distinct Hermann–Mauguin symbols for monoclinic/rectangular
and orthorhombic/rectangular layer groups in different settings

Layer group

Setting symbol

(abc) (b�ac)

Hermann–Mauguin symbol

L8 p211 p121

L9 p2111 p1211

L10 c211 c121

L11 pm11 p1m1

L12 pb11 p1a1

L13 cm11 c1m1

L14 p2/m11 p12/m1

L15 p21/m11 p121/m1

L16 p2/b11 p12/a1

L17 p21/b11 p121/a1

L18 c2/m11 c12/m1

L20 p2122 p2212

L24 pma2 pbm2

L27 pm2m p2mm

L28 pm21b p21ma

L29 pb21m p21am

L30 pb2b p2aa

L31 pm2a p2mb

L32 pm21n p21mn

L33 pb21a p21ab

L34 pb2n p2an

L35 cm2m c2mm

L36 cm2a c2mb

L38 pmaa pbmb

L40 pmam pbmm

L41 pmma pmmb

L42 pman pbmn

L43 pbaa pbab

L45 pbma pmab
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headline of each cell choice contains a small drawing indicating

the origin and basis vectors of the cell that apply to that

description.

For the monoclinic/rectangular and orthorhombic/rectangular

layer groups, two diagrams are given, as illustrated in Figs. 1.2.6.4

and 1.2.6.5, respectively. For these groups, the Hermann–

Mauguin symbol for the layer group is given for two settings, i.e.

for two ways of assigning the labels a, b, c to the basis vectors of

the conventional coordinate system.

The symbol for each setting is referred to as a setting symbol.

The setting symbol for the standard setting is (abc). The

Hermann–Mauguin symbol of the layer group in the conven-

tional coordinate system, in the standard setting, is the same as

the Hermann–Mauguin symbol in the first line of the headline.

The setting symbol for all other settings is a shorthand notation

for the relabelling of the basis vectors. For example, the setting

symbol (cab) means that the basis vectors relabelled in this

setting as a, b and c were in the standard setting labelled c, a and

b, respectively [cf. Section 2.2.6 of IT A (2005)].

For these groups, the two settings considered are the standard

(abc) setting and a second (b�ac) setting. In Fig. 1.2.6.6, the (abc)

setting symbol is written horizontally across the top of the

diagram and the second (b�ac) setting symbol is written vertically

on the left-hand side of the diagram. When viewing the diagram

with the (abc) setting symbol written horizontally across the top

of the diagram, the origin of the coordinate system is at the upper

left-hand corner of the diagram, the basis vector labelled a is

downward towards the bottom of the page, the basis vector

labelled b is to the right and the basis vector labelled c is upward

out of the page (see also Figs. 1.2.6.4 and 1.2.6.5). When viewing

the diagram with the (b�ac) written horizontally, i.e. by rotating

the page clockwise by 90� or by viewing the diagram from the

right, the position of the origin and the labelling of the basis

vectors are as above, i.e. the origin is at the upper left-hand

corner, the basis vector labelled a is downward, the basis vector

labelled b is to the right and the basis vector labelled c is upward

out of the page. In the symmetry diagrams of these groups, Part 4,

the setting symbols are not given. In their place is given the

Hermann–Mauguin symbol of the layer group in the conven-

tional coordinate system in the corresponding setting. The

Hermann–Mauguin symbol in the standard setting is given

horizontally across the top of the diagram, and in the second

setting vertically on the left-hand side.

If the two Hermann–Mauguin symbols are the same (i.e. as the

Hermann–Mauguin symbol in the first line of the heading), then

no symbols are explicitly given. A listing of monoclinic/rectan-

gular and orthorhombic/rectangular layer groups with distinct

Hermann–Mauguin symbols in the two settings is given in Table

1.2.6.1.

Example: The layer group pma2 (L24)

In the (abc) setting, the Hermann–Mauguin symbol is pma2. In

the (b�ac) setting, the Hermann–Mauguin symbol is pbm2.

For the square/tetragonal, hexagonal/trigonal and hexagonal/

hexagonal layer groups, two diagrams are given, as illustrated in

Figs. 1.2.6.7 and 1.2.6.8.

10

Fig. 1.2.6.7. Diagrams for square/tetragonal layer groups.

Fig. 1.2.6.8. Diagrams for trigonal/hexagonal and hexagonal/hexagonal layer
groups.

Fig. 1.2.6.9. Diagrams for triclinic rod groups.
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(ii) Rod groups

For triclinic, monoclinic/inclined, monoclinic/orthogonal and

orthorhombic rod groups, six diagrams are given: three symmetry

diagrams and three general-position diagrams. These diagrams

are orthogonal projections along each of the conventional

coordinate system basis vectors. For pictorial clarity, each

of the projections contains an area bounded by a circle or a

parallelogram. These areas may be considered as the projections

of a cylindrical volume, whose axis coincides with the c lattice

vector, bounded at z ¼ 0 and z ¼ 1 by planes

parallel to the plane containing the a and b basis vectors. The

projection of the c lattice vector is shown explicitly. Only the

directions of the projected non-lattice basis vectors a and b are

indicated in the diagrams, denoted by lines from the origin to the

boundary of the projected cylinder. These diagrams are illu-

strated for triclinic rod groups in Fig. 1.2.6.9, for monoclinic/

inclined rod groups in Fig. 1.2.6.10, for monoclinic/orthogonal rod

groups in Fig. 1.2.6.11 and for orthorhombic rod groups in Fig.

1.2.6.12.

The symmetry diagrams consist of the c projection, outlined

with a circle at the upper left-hand side, the a projection at the

lower left-hand side and the b projection at the upper right-hand

side. The general-position diagrams are the c projection, outlined

with a circle at the lower right-hand side, and the remaining two

general-position diagrams next to the corresponding symmetry

diagrams.

11

Fig. 1.2.6.10. Diagrams for monoclinic/inclined rod groups.

Fig. 1.2.6.11. Diagrams for monoclinic/orthogonal rod groups.
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Six settings for each of these rod groups are considered and the

corresponding setting symbols are shown in Fig. 1.2.6.13. This

figure schematically shows the three symmetry diagrams each

with two setting symbols, one written horizontally across the top

of the diagram and the second written vertically along the left-

hand side of the diagram. In the symmetry diagrams of these

groups, Part 3, the setting symbols are not given. In their place is

given the Hermann–Mauguin symbol of the layer group in the

conventional coordinate system in the corresponding setting. As

there are only translations in one dimension, it is necessary to add

to the translational part of the Hermann–Mauguin symbol a

subindex to the lattice symbol to denote the direction of the

translations. For example, consider the rod group of the type p211
(R3). The Hermann–Mauguin symbol in the conventional coor-

dinate system in the standard (abc) setting is given by pc211 as the

translations of the rod group in the standard setting are along the

direction labelled c. In the (bca) setting, the Hermann–Mauguin

symbol is p
b
112, where the subindex b denotes that the transla-

tions are, in this setting, along the direction labelled b. A list of

the six Hermann–Mauguin symbols in the six settings for the

triclinic, monoclinic/inclined, monoclinic/orthogonal and ortho-

rhombic rod groups is given in Table 1.2.6.2.

Example: The rod group pmc21 (R17)

The Hermann–Mauguin setting symbols for the six settings are:

Setting symbol Hermann�Mauguin symbol

ðabcÞ pcmc21
ðb�acÞ p

c
cm21

ð�cbaÞ p
a
21am

ðbcaÞ p
b
b21m

ða�cbÞ p
b
m21b

ð�c�abÞ p
a
21ma

For tetragonal, trigonal and hexagonal rod groups, two

diagrams are given: the symmetry diagram and the general-

12

Fig. 1.2.6.12. Diagrams for orthorhombic rod groups.

Fig. 1.2.6.13. Setting symbols on symmetry diagrams for the monoclinic/
inclined, monoclinic/orthogonal and orthorhombic rod groups.

Fig. 1.2.6.14. Diagrams for tetragonal rod groups.
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position diagram. These diagrams are illustrated in Figs. 1.2.6.14

and 1.2.6.15. One can consider additional settings for these rod

groups: see the setting symbols in Table 1.2.6.3. If the Hermann–

Mauguin symbols for the group in these settings are identical,

only one tabulation of the group, in the standard setting, is given.

If in these settings two distinct Hermann–Mauguin symbols are

obtained, a second tabulation for the rod group is given. This

second tabulation is in the conventional coordinate system in the

(a þ b a þ b c) setting for tetragonal groups, and in the

13

Table 1.2.6.2. Distinct Hermann–Mauguin symbols for monoclinic and orthorhombic rod groups in different settings

Rod group

Setting symbol

(abc) (b�ac) (�cba) (bca) (a�cb) (�c�ab)

Hermann–Mauguin symbol

R3 pc211 pc121 pa112 pb112 pb211 pa121

R4 pcm11 pc1m1 pa11m pb11m pbm11 pa1m1

R5 pcc11 pc1c1 pa11a pb11b pbb11 pa1a1

R6 pc2/m11 pc12/m1 pa112/m pb112/m pb2/m11 pa12/m1

R7 pc2/c11 pc12/c1 pa112/a pb112/b pb2/b11 pa12/a1

R8 pc112 pc112 pa211 pb121 pb121 pa211

R9 pc1121 pc1121 pa2111 pb1211 pb1211 pa2111

R10 pc11m pc11m pam11 pb1m1 pb1m1 pam11

R11 pc112/m pc112/m pa2/m11 pb12/m1 pb12/m1 pa2/m11

R12 pc1121/m pc1121/m pa21/m11 pb121/m1 pb121/m1 pa21/m11

R13 pc222 pc222 pa222 pb222 pb222 pa222

R14 pc2221 pc2221 pa2122 pb2212 pb2212 pa2122

R15 pcmm2 pcmm2 pa2mm pbm2m pbm2m pa2mm

R16 pccc2 pccc2 pa2aa pbb2b pbb2b pa2aa

R17 pcmc21 pccm21 pa21am pbb21m pbm21b pa21ma

R18 pc2mm pcm2m pamm2 pbmm2 pb2mm pam2m

R19 pc2cm pcc2m pama2 pbbm2 pb2mb pam2a

R20 pcmmm pcmmm pammm pbmmm pbmmm pammm

R21 pcccm pcccm pamaa pbbmb pbbmb pamaa

R22 pcmcm pccmm pamam pbbmm pbmmb pamma

Table 1.2.6.3. Distinct Hermann–Mauguin symbols for tetragonal, trigonal and
hexagonal rod groups in different settings

Rod group

Setting symbol

ðabcÞ ða � b b � a cÞ

Hermann–Mauguin symbol

R35 p42cm p42mc

R37 p �42m p �4m2

R38 p �42c p �4c2

R41 p42/mmc p42/mcm

Rod group

Setting symbol

ðabcÞ

ð�2a � b �a � b cÞ

ð�a � 2b �2a � b cÞ

ð�a � b �a � 2b cÞ

Hermann–Mauguin symbol

R46 p312 p321
R47 p3112 p3121
R48 p3212 p3221
R49 p3m1 p31m

R50 p3c1 p31c

R51 p �31m p �3m1

R52 p �31c p �3c1

R70 p63mc p63cm

R71 p �6m2 p �62m

R72 p �6c2 p �62c

R75 p63/mmc p63/mcm

Fig. 1.2.6.15. Diagrams for trigonal and hexagonal rod groups.

Fig. 1.2.6.16. Diagrams for oblique frieze groups.

Fig. 1.2.6.17. Diagrams for rectangular frieze groups.
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(2a þ b a þ b c) setting for trigonal and hexagonal groups.

These second tabulations aid in the correlation of Wyckoff

positions of space groups and Wyckoff positions of rod groups.

For example, the Wyckoff positions of the two space groups types

P3m1 and P31m can be easily correlated with, respectively, the

Wyckoff positions of a rod group of the type R49 in the standard

setting where the Hermann–Mauguin symbol is p3m1 and in the

second setting where the symbol is p31m. In Table 1.2.6.3, we list

the tetragonal, trigonal and hexagonal rod groups where in the

different settings the two Hermann–Mauguin symbols are

distinct.

(iii) Frieze groups

Two diagrams are given for each frieze group: a symmetry

diagram and a general-position diagram. These diagrams are

illustrated for the oblique and rectangular frieze groups in Figs.

1.2.6.16 and 1.2.6.17, respectively. We consider the two settings

(ab) and (ba), see Fig. 1.2.6.18. In the frieze-group tables, Part 2,

we replace the setting symbols with the corresponding Hermann–

Mauguin symbols where a subindex is added to the lattice symbol

to denote the direction of the translations. A listing of the frieze

groups with the Hermann–Mauguin symbols of each group in the

two settings is given in Table 1.2.6.4.

1.2.7. Origin

The origin has been chosen according to the following conven-

tions:

(i) If the subperiodic group is centrosymmetric, then the

inversion centre is chosen as the origin. For the three layer groups

p4/n (L52), p4/nbm (L62) and p4/nmm (L64), we give descrip-

tions for two origins, at the inversion centre and at (� 1
4 ;�

1
4 ; 0)

from the inversion centre. This latter origin is at a position of high

site symmetry and is consistent with having the origin on the

fourfold axis, as is the case for all other tetragonal layer groups.

The group symbols for the description with the origin at the

inversion centre, e.g. p4=n ð 14 ;
1
4 ; 0Þ, are followed by the shift

ð 14 ;
1
4 ; 0Þ of the position of the origin used in the description

having the origin on the fourfold axis.

(ii) For noncentrosymmetric subperiodic groups, the origin is

at a point of highest site symmetry. If no symmetry is higher than

1, the origin is placed on a screw axis, a glide plane or at the

intersection of several such symmetry elements.

Origin statement: In the line Origin immediately below the

diagrams, the site symmetry of the origin is stated if different

from the identity. A further symbol indicates all symmetry

elements that pass through the origin. For the three layer groups

p4/n (L52), p4/nbm (L62) and p4/nmm (L64) where the origin is

on the fourfold axis, the statement ‘at � 1
4 ;�

1
4 ; 0 from centre’ is

given to denote the position of the origin with respect to an

inversion centre.

1.2.8. Asymmetric unit

An asymmetric unit of a subperiodic group is a simply connected

smallest part of space from which, by application of all symmetry

operations of the subperiodic group, the whole space is filled

exactly. For three-dimensional (two-dimensional) space groups,

14

Fig. 1.2.6.18. The two settings for frieze groups. For the second setting,
printed vertically, the page must be turned 90� clockwise or viewed from the
right-hand side.

Fig. 1.2.8.1. Boundaries used to define the asymmetric unit for (a) tetragonal
rod groups and (b) trigonal and hexagonal rod groups.

Table 1.2.6.4. Distinct Hermann–Mauguin symbols for frieze groups in
different settings

Setting symbol

(ab) (b�a)

Frieze group Hermann–Mauguin symbol

F1 pa1 pb1

F2 pa211 pb211

F3 pa1m1 pb11m

F4 pa11m pb1m1

F5 pa11g pb1g1

F6 pa2mm pb2mm

F7 pa2mg pb2gm
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because they contain three-dimensional (two-dimensional)

translational symmetry, the asymmetric unit is a finite part of

space [see Section 2.2.8 of IT A (2005)]. For subperiodic groups,

because the translational symmetry is of a lower dimension than

that of the space, the asymmetric unit is infinite in size. We define

the asymmetric unit for subperiodic groups by setting the limits

on the coordinates of points contained in the asymmetric unit.

1.2.8.1. Frieze groups

For all frieze groups, a limit is set on the x coordinate of the

asymmetric unit by the inequality

0 � x � upper limit on x:

For the y coordinate, either there is no limit and nothing further is

written, or there is the lower limit of zero, i.e. 0 � y.

Example: The frieze group p2mm (F6)

Asymmetric unit 0 � x � 1=2; 0 � y:

1.2.8.2. Rod groups

For all rod groups, a limit is set on the z coordinate of the

asymmetric unit by the inequality

0 � z � upper limit on z:

For each of the x and y coordinates, either there is no limit and

nothing further is written, or there is the lower limit of zero.

For tetragonal, trigonal and hexagonal rod groups, additional

limits are required to define the asymmetric unit. These limits are

given by additional inequalities, such as x � y and y � x=2. Fig.
1.2.8.1 schematically shows the boundaries represented by such

inequalities.

Example: The rod group p63mc (R70)

Asymmetric unit 0 � x; 0 � y; 0 � z � 1; y � x=2:

1.2.8.3. Layer groups

For all layer groups, limits are set on the x coordinate and y

coordinate of the asymmetric unit by the inequalities

0 � x � upper limit on x

0 � y � upper limit on y:

For the z coordinate, either there is no limit and nothing further is

written, or there is the lower limit of zero.

For tetragonal/square, trigonal/hexagonal and hexagonal/

hexagonal layer groups, additional limits are required to define

the asymmetric unit. These additional limits are given by addi-

tional inequalities. Fig. 1.2.8.2 schematically shows the bound-

aries represented by these inequalities. For trigonal/hexagonal

and hexagonal/hexagonal layer groups, because of the compli-

cated shape of the asymmetric unit, the coordinates (x, y) of the

vertices of the asymmetric unit with the z = 0 plane are given.

Example: The layer group p3m1 (L69)

Asymmetric unit 0 � x � 2=3; 0 � y � 2=3; x � 2y;

y � min ð1� x; 2xÞ

Vertices 0; 0; 2=3; 1=3; 1=3; 2=3:

1.2.9. Symmetry operations

The coordinate triplets of the General position of a subperiodic

group may be interpreted as a shorthand description of the

symmetry operations in matrix notation as in the case of space

groups [see Sections 2.2.3, 8.1.5 and 11.1.1 of IT A (2005)]. The

geometric description of the symmetry operations is found in the

subperiodic group tables under the heading Symmetry operations.

These data form a link between the subperiodic group diagrams

(Section 1.2.6) and the general position (Section 1.2.11). Below

the geometric description we give the Seitz notation (Burns &

Glazer, 1990) of each symmetry operation using the subindex

notation of Zak et al. (1969).

1.2.9.1. Numbering scheme

The numbering ð1Þ . . . ð pÞ . . . of the entries in the blocks

Symmetry operations and General position (first block below

Positions) is the same. Each listed coordinate triplet of the

general position is preceded by a number between parentheses

(p). The same number (p) precedes the corresponding symmetry

operation. For all subperiodic groups with primitive lattices, the

two lists contain the same number of entries.

For the nine layer groups with centred lattices, to the one block

of General positions correspond two blocks of Symmetry opera-

tions. The numbering scheme is applied to both blocks. The two

blocks correspond to the two centring translations below the

subheading Coordinates, i.e. ð0; 0; 0Þþ ð1=2; 1=2; 0Þþ. For the

Positions, the reader is expected to add these two centring
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Fig. 1.2.8.2. Boundaries used to define the asymmetric unit for (a) tetragonal/
square layer groups and (b) trigonal/hexagonal and hexagonal/hexagonal
layer groups. In (b), the coordinates (x, y) of the vertices of the asymmetric
unit with the z = 0 plane are also given.
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translations to each printed coordinate triplet in order to obtain

the complete general position. For the Symmetry operations, the

corresponding data are listed explicitly with the two blocks

having the subheadings ‘For (0, 0, 0)+ set’ and ‘For (1/2, 1/2, 0)+

set’, respectively.

1.2.9.2. Designation of symmetry operations

The designation of symmetry operations for the subperiodic

groups is the same as for the space groups. An entry in the block

Symmetry operations is characterized as follows:

(i) A symbol denoting the type of the symmetry operation [cf.

Chapter 1.2 of IT A (2005)], including its glide or screw part, if

present. In most cases, the glide or screw part is given explicitly

by fractional coordinates between parentheses. The sense of a

rotation is indicated by the superscript + or �. Abbreviated

notations are used for the glide reflections a(1/2, 0, 0) � a;

b(0, 1/2, 0)� b; c(0, 0, 1/2)� c. Glide reflections with complicated

and unconventional glide parts are designated by the letter g,

followed by the glide part between parentheses.

(ii) A coordinate triplet indicating the location and orientation

of the symmetry element which corresponds to the symmetry

operation. For rotoinversions the location of the inversion point

is also given.

Details of this symbolism are given in Section 11.1.2 of IT A

(2005).

Examples

(1) m x; 0; z: a reflection through the plane x; 0; z, i.e. the

plane parallel to (010) containing the point (0, 0, 0).

(2) m x þ 1=2; �x; z: a reflection through the plane

x þ 1=2; �x; z, i.e. the plane parallel to (110) containing the point

(1/2, 0, 0).

(3) gð1=2; 1=2; 0Þ x; x; z: glide reflection with glide compo-

nent (1/2, 1/2, 0) through the plane x; x; z, i.e. the plane parallel to

(1�10) containing the point (0, 0, 0).

(4) 2ð1=2; 0; 0Þ x; 1=4; 0: screw rotation along the (100)

direction containing the point (0, 1/4, 0) with a screw component

(1/2, 0, 0).

(5) �4� 1=2; 0; z 1=2; 0; 0: fourfold rotoinversion consisting

of a clockwise rotation by 90� around the line 1/2, 0, z followed by

an inversion through the point (1/2, 0, 0).

1.2.10. Generators

The line Generators selected states the symmetry operations and

their sequence selected to generate all symmetrically equivalent

points of the General position from a point with coordinates

x; y; z. The identity operation given by (1) is always selected as

the first generator. The generating translations are listed next,

t(1, 0) for frieze groups, t(0, 0, 1) for rod groups, and t(1, 0, 0) and

t(0, 1, 0) for layer groups. For centred layer groups, there is the

additional centring translation t(1/2, 1/2, 0). The additional

generators are given as numbers (p) which refer to the corre-

sponding coordinate triplets of the general position and the

corresponding entries under Symmetry operations; for centred

layer groups, the first block ‘For (0, 0, 0)+ set’ must be used.

1.2.11. Positions

The entries under Positions (more explicitly called Wyckoff

positions) consist of the General position (upper block) and the

Special positions (blocks below). The columns in each block, from

left to right, contain the following information for each Wyckoff

position.

(i) Multiplicity M of the Wyckoff position. This is the number

of equivalent points per conventional cell. The multiplicity M of

the general position is equal to the order of the point group of the

subperiodic group, except in the case of centred layer groups

when it is twice the order of the point group. The multiplicity M

of a special position is equal to the order of the point group of the

subperiodic group divided by the order of the site-symmetry

group (see Section 1.2.12).

(ii) Wyckoff letter. This letter is a coding scheme for the

Wyckoff positions, starting with a at the bottom position and

continuing upwards in alphabetical order.

(iii) Site symmetry. This is explained in Section 1.2.12.

(iv) Coordinates. The sequence of the coordinate triplets is

based on the Generators. For the centred layer groups, the

centring translations (0, 0, 0)+ and (1/2, 1/2, 0)+ are listed above

the coordinate triplets. The symbol ‘+’ indicates that in order to

obtain a complete Wyckoff position, the components of these

centring translations have to be added to the listed coordinate

triplets.

(v) Reflection conditions. These are described in Section 1.2.13.

The two types of positions, general and special, are char-

acterized as follows:

(i) General position. A set of symmetrically equivalent points is

said to be in a ‘general position’ if each of its points is left

invariant only by the identity operation but by no other

symmetry operation of the subperiodic group.

(ii) Special position(s). A set of symmetrically equivalent

points is said to be in a ‘special position’ if each of its points is

mapped onto itself by at least one additional operation in addi-

tion to the identity operation.

Example: Layer group c2=m11 (L18)

The general position 8f of this layer group contains eight

equivalent points per cell each with site symmetry 1. The

coordinate triplets of four points (1) to (4) are given explicitly,

the coordinate triplets of the other four points are obtained by

adding the components (1/2, 1/2, 0) of the c-centring transla-

tion to the coordinate triplets (1) to (4).

This layer group has five special positions with the Wyckoff

letters a to e. The product of the multiplicity and the order of

the site-symmetry group is the multiplicity of the general

position. For position 4d, for example, the four equivalent

points have the coordinates x; 0; 0, �x; 0; 0, x þ 1=2; 1=2; 0 and

�x þ 1=2; 1=2; 0. Since each point of position 4d is mapped onto

itself by a twofold rotation, the multiplicity of the position is

reduced from eight to four, whereas the order of the site

symmetry is increased from one to two.

1.2.12. Oriented site-symmetry symbols

The third column of each Wyckoff position gives the site

symmetry of that position. The site-symmetry group is isomorphic

to a proper or improper subgroup of the point group to which the

subperiodic group under consideration belongs. Oriented site-

symmetry symbols are used to show how the symmetry elements

at a site are related to the conventional crystallographic basis.

The site-symmetry symbols display the same sequence of

symmetry directions as the subperiodic group symbol (cf. Table

1.2.4.1). Sets of equivalent symmetry directions that do not

contribute any element to the site-symmetry group are repre-

sented by a dot. Sets of symmetry directions having more than

one equivalent direction may require more than one character if

16
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the site-symmetry group belongs to a lower crystal system. For

example, for the 2c position of tetragonal layer group p4mm

(L55), the site-symmetry group is the orthorhombic group

‘2mm.’. The two characters ‘mm’ represent the secondary set of

tetragonal symmetry directions, whereas the dot represents the

tertiary tetragonal symmetry direction.

1.2.13. Reflection conditions

The Reflection conditions are listed in the right-hand column of

each Wyckoff position. There are two types of reflection condi-

tions:

(i) General conditions. These conditions apply to all Wyckoff

positions of the subperiodic group.

(ii) Special conditions (‘extra’ conditions). These conditions

apply only to special Wyckoff positions and must always be added

to the general conditions of the subperiodic group.

The general reflection conditions are the result of three effects:

centred lattices, glide planes and screw axes. For the nine layer

groups with centred lattices, the corresponding general reflection

condition is h þ k ¼ 2n. The general reflection conditions due to

glide planes and screw axes for the subperiodic groups are given

in Table 1.2.13.1.

Example: The layer group p4bm (L56)

General position 8d: 0k : k ¼ 2n and h0 : h ¼ 2n due respec-

tively to the glide planes b and a. The projections along [100]

and [010] of any crystal structure with this layer-group

symmetry have, respectively, periodicity b/2 and a/2.

Special positions 2a and 2b: hk : h þ k ¼ 2n. Any set of

equivalent atoms in either of these positions displays addi-

tional c-centring.

1.2.14. Symmetry of special projections

1.2.14.1. Data listed in the subperiodic group tables

Under the heading Symmetry of special projections, the

following data are listed for three orthogonal projections of each

layer group and rod group and two orthogonal projections of

each frieze group:

(i) For layer and rod groups, each projection is made onto a

plane normal to the projection direction. If there are three kinds

of symmetry directions (cf. Table 1.2.4.1), the three projection

directions correspond to the primary, secondary and tertiary

symmetry directions. If there are fewer than three symmetry

directions, the additional projection direction(s) are taken along

coordinate axes.

For frieze groups, each projection is made on a line normal to

the projection direction.

The directions for which data are listed are as follows:

(a) Layer groups:

Triclinic=oblique

Monoclinic=oblique

Monoclinic=rectangular

Orthorhombic=rectangular

9
>>>=

>>>;

½001�; ½100�; ½010�

Tetragonal=square ½001�; ½100�; ½110�

Trigonal=hexagonal

Hexagonal=hexagonal

�

½001�; ½100�; ½210�

(b) Rod groups:

Triclinic

Monoclinic=inclined

Monoclinic=orthogonal

Orthorhombic

9
>>>=

>>>;

½001�; ½100�; ½010�

Tetragonal ½001�; ½100�; ½110�

Trigonal

Hexagonal

�

½001�; ½100�; ½210�

(c) Frieze groups:

Oblique

Rectangular

�

½10�; ½01�

(ii) The Hermann–Mauguin symbol. For the [001] projection of

a layer group, the Hermann–Mauguin symbol for the plane group

resulting from the projection of the layer group is given. For the

[001] projection of a rod group, the Hermann–Mauguin symbol

for the resulting two-dimensional point group is given. For the

remainder of the projections, in the case of both layer groups and
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Table 1.2.13.1. General reflection conditions due to glide planes and screw axes

(a) Layer groups.
(1) Glide planes.

Reflection
condition

Orientation of
plane Glide vector Symbol

hk: h = 2n (001) a/2 a

hk: k = 2n (001) b/2 b

hk: h þ k ¼ 2n (001) a/2 + b/2 n

0k: k = 2n (100) b/2 b

h0: h = 2n (010) a/2 a

(2) Screw axes.

Reflection
condition

Direction of
axis Screw vector Symbol

h0: h = 2n [100] a/2 21

0k: k = 2n [010] b/2 21

(b) Rod groups.
(1) Glide planes.

Reflection
condition Orientation of plane Glide vector Symbol

l: l = 2n Any orientation
parallel to the c axis

c/2 c

(2) Screw axes.

Reflection
condition

Direction of
axis Screw vector Symbol

l: l = 2n [001] c/2 21, 42, 63

l: l = 3n [001] c/3 31, 32, 62, 64

l: l = 4n [001] c/4 41, 43

l: l = 6n [001] c/6 61, 65

(c) Frieze groups, glide plane.

Reflection
condition

Orientation of
plane Glide vector Symbol

h: h = 2n (10) a/2 g
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rod groups, the Hermann–Mauguin symbol is given for the

resulting frieze group. For the [10] projection of a frieze group,

the Hermann–Mauguin symbol of the resulting one-dimensional

point group, i.e. 1 or m, is given. For the [01] projection, the

Hermann–Mauguin symbol of the resulting one-dimensional

space group, i.e. p1 or pm, is given.

(iii) For layer groups, the basis vectors a0, b0 of the plane group

resulting from the [001] projection and the basis vector a0 of the

frieze groups resulting from the additional two projections are

given as linear combinations of the basis vectors a, b of the layer

group. Basis vectors a, b inclined to the plane of projection are

replaced by the projected vectors ap, bp. For the two

projections of a rod group resulting in a frieze group, the basis

vector a0 of the resulting frieze group is given in terms of the basis

vector c of the rod group. For the [01] projection of a

frieze group, the basis vector a0 of the resulting one-dimensional

space group is given in terms of the basis vector a of the frieze

group.

For rod groups and layer groups, the relations between a0, b0

and � 0 of the projected conventional basis vectors and a, b, c, �, �
and � of the conventional basis vectors of the subperiodic group

are given in Table 1.2.14.1. We also give in this table the relations

between a0 of the projected conventional basis and a, b and � of

the conventional basis of the frieze group.
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Table 1.2.14.1. a0, b0, � 0 (a0) of the projected conventional coordinate system in terms of a, b, c, �, �, � (a, b, �) of the conventional coordinate system of the layer

and rod groups (frieze groups)

(a) Layer groups.

Projection
direction Triclinic/oblique Monoclinic/oblique

[001] a0 ¼ a sin� a0 ¼ a
b0 ¼ b sin� b0 ¼ b

� 0 ¼ 180� � �	† � 0 ¼ �

[100] a0 ¼ b sin � a0 ¼ b sin �
b0 ¼ c sin� b0 ¼ c

� 0 ¼ 180� � �	† � 0 ¼ 90�

[010] a0 ¼ a sin � a0 ¼ a sin �
b0 ¼ c sin� b0 ¼ c

� 0 ¼ 180� � �	† � 0 ¼ 90�

Monoclinic/
rectangular

Orthorhombic/
rectangular

[001] a0 ¼ a a0 ¼ a
b0 ¼ b sin� b0 ¼ b

� 0 ¼ 90� � 0 ¼ 90�

[100] a0 ¼ b a0 ¼ b
b0 ¼ c b0 ¼ c

� 0 ¼ � � 0 ¼ 90�

[010] a0 ¼ a a0 ¼ a
b0 ¼ c sin� b0 ¼ c

� 0 ¼ 90� � 0 ¼ 90�

Tetragonal/square

[001] a0 ¼ a
b0 ¼ a

� 0 ¼ 90�

[100] a0 ¼ a
b0 ¼ c

� 0 ¼ 90�

[110] a0 ¼ ða=2Þð2Þ1=2

b0 ¼ c

� 0 ¼ 90�

Trigonal/hexagonal, hexagonal/hexagonal

[001] a0 ¼ a
b0 ¼ a

� 0 ¼ 120�

[100] a0 ¼ ½ð3Þ1=2=2�a
b0 ¼ c

� 0 ¼ 90�

[210] a0 ¼ a=2
b0 ¼ c

� 0 ¼ 90�

(b) Rod groups.

Projection
direction Triclinic Monoclinic/inclined

[001] a0 ¼ a sin� a0 ¼ a
b0 ¼ b sin� b0 ¼ b sin�

� 0 ¼ 180� � �	† � 0 ¼ 90�

[100] a0 ¼ c sin� a0 ¼ c
b0 ¼ b sin � b0 ¼ b

� 0 ¼ 180� � �	† � ¼ �

[010] a0 ¼ c sin� a0 ¼ c sin�
b0 ¼ a sin � b0 ¼ a

� 0 ¼ 180� � �	† � 0 ¼ 90�

Monoclinic/
orthogonal Orthorhombic

[001] a0 ¼ a a0 ¼ a
b0 ¼ b b0 ¼ b

� 0 ¼ � � 0 ¼ 90�

[100] a0 ¼ c a0 ¼ c
b0 ¼ b sin � b0 ¼ b

� 0 ¼ 90� � 0 ¼ 90�

[010] a0 ¼ c a0 ¼ c
b0 ¼ a sin � b0 ¼ a

� 0 ¼ 90� � 0 ¼ 90�

Tetragonal

[001] a0 ¼ a
b0 ¼ a

� 0 ¼ 90�

[100] a0 ¼ c
b0 ¼ a

� 0 ¼ 90�

[110] a0 ¼ c
b0 ¼ ða=2Þð2Þ1=2

� 0 ¼ 90�

Trigonal, hexagonal

[001] a0 ¼ a
b0 ¼ a

� 0 ¼ 120�

[100] a0 ¼ c
b0 ¼ ½ð3Þ1=2=2�a

� 0 ¼ 90�

[210] a0 ¼ c
b0 ¼ a=2

� 0 ¼ 90�

(c) Frieze groups.

Projection
direction Oblique Rectangular

[10] a0 ¼ b sin � a0 ¼ b

[01] a0 ¼ a sin � a0 ¼ a

† cos �	 ¼ ðcos � cos � � cos �Þ=ðsin � sin �Þ,
cos �	 ¼ ðcos � cos �� cos �Þ=ðsin � sin �Þ,
cos �	 ¼ ðcos � cos �� cos �Þ=ðsin� sin �Þ:



1.2. GUIDE TO THE USE OF THE SUBPERIODIC GROUP TABLES

(iv) Location of the origin of the plane group, frieze group and

one-dimensional space group is given with respect to the

conventional lattice of the subperiodic group. The same

description is used as for the location of symmetry elements

(see Section 1.2.9). Example: ‘Origin at x, 0, 0’ or ‘Origin at

x, 1/4, 0’.

1.2.14.2. Projections of centred subperiodic groups

The only centred subperiodic groups are the nine types of

centred layer groups. For the [100] and [010] projection direc-

tions, because of the centred layer-group lattice, the basis vectors

of the resulting frieze groups are a0 = b/2 and a0 = a/2, respectively.

1.2.14.3. Projection of symmetry elements

A symmetry element of a subperiodic group projects as a

symmetry element only if its orientation bears a special rela-

tionship to the projection direction. In Table 1.2.14.2, the three-

dimensional symmetry elements of the layer and rod groups and

in Table 1.2.14.3 the two-dimensional symmetry elements of the

frieze groups are listed along with the corresponding symmetry

element in projection.

Example: Layer group cm2m (L35)

Projection along [001]: This orthorhombic/rectangular plane

group is centred; m perpendicular to [100] is projected as a

reflection line, 2 parallel to [010] is projected as the same

reflection line and m perpendicular to [001] gives rise to no

symmetry element in projection, but to an overlap of atoms.

Result: Plane group c1m1 (5) with a0 = a and b0 = b.

Projection along [100]: The frieze group has the basis vector a0

= b/2 due to the centred lattice of the layer group. m perpen-

dicular to [100] gives rise only to an overlap of atoms, 2 parallel

to [010] is projected as a reflection line and m perpendicular to

[001] is projected as the same reflection line. Result: Frieze

group p11m (F4) with a0 = b/2.

Projection along [010]: The frieze group has the basis vector a0

= a/2 due to the centred lattice of the layer group. The two

reflection planes project as perpendicular reflection lines and 2

parallel to [010] projects as the rotation point 2. Result: Frieze

group p2mm (F6) with a0 = a/2.

1.2.15. Maximal subgroups and minimal supergroups

In IT A (2005), for the representative space group of each space-

group type the following information is given:

(i) maximal non-isomorphic subgroups,

(ii) maximal isomorphic subgroups of lowest index,

(iii) minimal non-isomorphic supergroups and

(iv) minimal isomorphic supergroups of lowest index.

However, Bieberbach’s theorem for space groups, i.e. the

classification into isomorphism classes is identical with the clas-

sification into affine equivalence classes, is not valid for subper-

iodic groups. Consequently, to obtain analogous tables for the

subperiodic groups, we provide the following information for

each representative subperiodic group:

(i) maximal non-isotypic non-enantiomorphic subgroups,

(ii) maximal isotypic subgroups and enantiomorphic subgroups

of lowest index,
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Table 1.2.14.2. Projection of three-dimensional symmetry elements (layer and rod groups)

Symmetry element in three dimensions Symmetry element in projection

Arbitrary orientation

Symmetry centre �1 Rotation point 2 at projection of centre

Parallel to projection direction

Rotation axis 2, 3, 4, 6 Rotation point 2, 3, 4, 6

Screw axis 21 Rotation point 2

31, 32 3

41, 42, 43 4

61, 62, 63, 64, 65 6

Rotoinversion axis �4 Rotation point 4

�6 � 3=m 3 (with overlap of atoms)

�3 � 3
 �1 6

Reflection plane m Reflection line m

Glide plane with ? component† Glide line g

Glide plane without ? component† Reflection line m

Normal to projection direction

Rotation axis 2, 4, 6 Reflection line m

3 None

Screw axis 42, 62, 64 Reflection line m

21, 41, 43, 61, 63, 65 Glide line g

31, 32 None

Rotoinversion axis �4 Reflection line m parallel to axis

�6 � 3=m Reflection line m perpendicular to axis

�3 � 3
 �1 Rotation point 2 (at projection of centre)

Reflection plane m None, but overlap of atoms

Glide plane with glide component t Translation t

† The term ‘with ? component’ refers to the component of the glide vector normal to the projection direction.
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(iii) minimal non-isotypic non-enantiomorphic supergroups

and

(iv) minimal isotypic supergroups and enantiomorphic super-

groups of lowest index,

where isotypic means ‘belonging to the same subperiodic group

type’. The cases of maximal enantiomorphic subgroups of lowest

index and minimal enantiomorphic supergroups of lowest index

arise only in the case of rod groups.

1.2.15.1. Maximal non-isotypic non-enantiomorphic subgroups

The maximal non-isotypic non-enantiomorphic subgroups S of

a subperiodic group G are divided into two types:

I translationengleiche or t subgroups and

II klassengleiche or k subgroups.

Type II is subdivided again into two blocks:

IIa: the conventional cells of G and S are the same, and

IIb: the conventional cell of S is larger than that of G.

Block IIa has no entries for subperiodic groups with a primi-

tive cell. Only in the case of the nine centred layer groups are

there entries, when it contains those maximal subgroups S which

have lost all the centring translations of G but none of the inte-

gral translations.

1.2.15.1.1. Blocks I and IIa

In blocks I and IIa, every maximal subgroup S of a subperiodic

group G is listed with the following information:

½i� HMS1 ðHMS2Þ Sequence of numbers

The symbols have the following meaning:

[i]: index of S in G.

HMS1: short Hermann–Mauguin symbol of S, referred to the

coordinate system and setting of G; this symbol may be uncon-

ventional.

(HMS2): conventional short Hermann–Mauguin symbol of S,

given only if HMS1 is not in conventional short form.

Sequence of numbers: coordinate triplets of G retained in S.

The numbers refer to the numbering scheme of the coordinate

triplets of the general position. For the centred layer groups the

following abbreviations are used:

Block I (all translations retained). Number +: coordinate

triplet given by Number, plus that obtained by adding the

centring translation (1/2, 1/2, 0) of G. (Numbers) +: the same as

above, but applied to all Numbers between parentheses.

Block IIa (not all translations retained). Number + (1/2, 1/2, 0):

coordinate triplet obtained by adding the translation (1/2, 1/2, 0)

to the triplet given by Number. (Numbers) + (1/2, 1/2, 0): the same

as above, but applied to all Numbers between parentheses.

Examples

(1) G: Layer group c211 (L10)

I ½2� c1 ðp1Þ 1þ

IIa ½2� p2111 1; 2þ ð1=2; 1=2; 0Þ
½2� p211 1; 2

where the numbers have the following meaning:

1þ x; y; z x þ 1=2; y þ 1=2; z

1; 2 x; y; z x; �y; �z
1; 2þ x; y; z x þ 1=2; �y þ 1=2; �z

(2) G: Rod group p422 (R30)

I ½2� p411 ðp4Þ 1; 2; 3; 4
½2� p221 ðp222Þ 1; 2; 5; 6
½2� p212 ðp222Þ 1; 2; 7; 8

The HMS1 symbol in each of the three subgroups S is given in

the tetragonal coordinate system of the group G. In the first case,

p411 is not the conventional short Hermann–Mauguin symbol

and a second conventional symbol p4 is given. In the latter two

cases, since the subgroups are orthorhombic rod groups, a second

conventional symbol of the subgroup in an orthorhombic coor-

dinate system is given.

1.2.15.1.2. Block IIb

Whereas in blocks I and IIa every maximal subgroup S of G is

listed, this is no longer the case for the entries of block IIb. The

information given in this block is

½i� HMS1 ðVectorsÞ ðHMS2Þ

The symbols have the following meaning:

[i]: index of S in G.

HMS1: Hermann–Mauguin symbol of S, referred to the coor-

dinate system and setting of G; this symbol may be unconven-

tional.

(Vectors): basis vectors of S in terms of the basis vectors of G.

No relations are given for basis vectors which are unchanged.

(HMS2): conventional short Hermann–Mauguin symbol, given

only if HMS1 is not in conventional short form.

Examples

(1) G: Rod group p222 (R13)

IIb ½2� p2221 ðc
0 ¼ 2cÞ

There are two subgroups which obey the same basis-vector

relation. Apart from the translations of the enlarged cell, the

generators of the subgroups, referred to the basis vectors of the

enlarged cell, are

x; y; z x; �y; �z þ 1=2 �x; y; �z
x; y; z x; �y; �z �x; y; �z þ 1=2:

(2) G: Layer group pm21b (L28)

IIb ½2� pm21n ða0 ¼ 2aÞ

This entry represents two subgroups whose generators, apart

from the translations of the enlarged cell, are
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Table 1.2.14.3. Projection of two-dimensional symmetry elements (frieze
groups)

Symmetry element in two dimensions Symmetry element in projection

Rotation point 2 Reflection point m

Parallel to projection direction

Reflection line m Reflection point m

Glide line g Reflection point m

Normal to projection direction

Reflection line m None (with overlap of atoms)

Glide line g with glide component t Translation t
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x; y; z �x þ 1=2; y; z �x; y þ 1=2; �z
x; y; z �x; y; z �x þ 1=2; y þ 1=2; �z:

The difference between the two subgroups represented by the

one entry is due to the different sets of symmetry operations ofG

which are retained in S. This can also be expressed as different

conventional origins of S with respect to G: the two subgroups in

the first example above are related by a translation c/4 of the

origin, and the two subgroups in the second example by a/4.

1.2.15.2. Maximal isotypic subgroups and enantiomorphic
subgroups of lowest index

Another set of klassengleiche subgroups is that listed under IIc,

i.e. the subgroups S which are of the same or of the enantio-

morphic subperiodic group type as G. Again, one entry may

correspond to more than one isotypic subgroup:

(a) As in block IIb, one entry may correspond to two isotypic

subgroups whose difference can be expressed as different

conventional origins of S with respect to G.

(b) One entry may correspond to two isotypic subgroups of

equal index but with cell enlargements in different directions

which are conjugate subgroups in the affine normalizer of G. The

different vector relationships are given, separated by ‘or’ and

placed within one pair of parentheses; cf. example (2).

Examples

(1) G: Rod group p222 (R13)

IIc ½2� p222 ðc0 ¼ 2cÞ

This entry corresponds to two isotypic subgroups. Apart from the

translations of the enlarged cell, the generators of the subgroups

are

x; y; z x; �y; �z �x; y; �z
x; y; z x; �y; �z þ 1=2 �x; y; �z þ 1=2

(2) G: Layer group pmm2 (L23)

IIc ½2� pmm2 ða0 ¼ 2a or b0 ¼ 2bÞ

This entry corresponds to four isotypic subgroups, two with the

enlarged cell with a0 = 2a and two with the enlarged cell with b0 =

2b. The generators of these subgroups are

a0 ¼ 2a b0 ¼ b x; y; z �x; y; z x; �y; z

a0 ¼ 2a b0 ¼ b x; y; z �x þ 1=2; y; z x; �y; z

a0 ¼ a b0 ¼ 2b x; y; z �x; y; z x; �y; z

a0 ¼ a b0 ¼ 2b x; y; z �x; y þ 1=2; z x; �y; z

(3) G: Rod group p41 (R24)
IIc ½3� p43 ðc

0 ¼ 3cÞ

½5� p41 ðc
0 ¼ 5cÞ

Listed here are both the maximal isotypic subgroup p41 and the

maximal enantiomorphic subgroup p43, each of lowest index.

1.2.15.3. Minimal non-isotypic non-enantiomorphic supergroups

If G is a maximal subgroup of a group H, then H is called a

minimal supergroup of G. Minimal supergroups are again

subdivided into two types, the translationengleiche or t super-

groups I and the klassengleiche or k supergroups II. For the t

supergroups I ofG, the listing contains the index [i] ofG inH and

the conventional Hermann–Mauguin symbol of H. For the k

supergroups II, the subdivision between IIa and IIb is not made.

The information given is similar to that for the subgroups IIb, i.e.

the relations between the basis vectors of group and supergroup

are given, in addition to the Hermann–Mauguin symbols of H.

Note that either the conventional cell of the k supergroup H is

smaller than that of the subperiodic group G, or H contains

additional centring translations.

Example: G: Layer group p21=m11 (L15)

Minimal non-isotypic non-enantiomorphic supergroups:

I ½2� pmam; ½2� pmma; ½2� pbma; ½2� pmmn

II ½2� c2=m11; ½2� p2=m11 ð2a0 ¼ aÞ

Block I lists [2] pmam, [2] pmma and [2] pmmn. Looking up

the subgroup data of these three groups one finds [2] p21/m11.

Block I also lists [2] pbma. Looking up the subgroup data of this

group one finds [2] p121/m1 (p21/m11). This shows that the setting

of pbma does not correspond to that of p21/m11 but rather to

p121/m1. To obtain the supergroup H referred to the basis of

p21/m11, the basis vectors a and b must be interchanged. This

changes pbma to pmba, which is the correct symbol of the

supergroup of p21/m11.

Block II contains two entries: the first where the conventional

cells are the same with the supergroup having additional centring

translations, and the second where the conventional cell of the

supergroup is smaller than that of the original subperiodic group.

1.2.15.4. Minimal isotypic supergroups and enantiomorphic
supergroups of lowest index

No data are listed for supergroups IIc, because they can be

derived directly from the corresponding data of subgroups IIc.

Example: G: Rod group p42=m (R29)

The maximal isotypic subgroup of lowest index of p42=m is

found in block IIc: [3] p42=m (c0 = 3c). By interchanging c0 and

c, one obtains the minimal isotypic supergroup of lowest index,

i.e. [3] p42=m (3c0 = c).

1.2.16. Nomenclature

There exists a wide variety of nomenclature for layer, rod and

frieze groups (Holser, 1961). Layer-group nomenclature includes

zweidimensionale Raumgruppen (Alexander & Herrmann,

1929a,b), Ebenengruppen (Weber, 1929), Netzgruppen

(Hermann, 1929a), net groups (IT, 1952; Opechowski, 1986),

reversal space groups in two dimensions (Cochran, 1952), plane

groups in three dimensions (Dornberger-Schiff, 1956, 1959; Belov,

1959), black and white space groups in two dimensions (Mackay,

1957), (two-sided) plane groups (Holser, 1958), Schichtgruppen

(Niggli, 1959; Chapuis, 1966), diperiodic groups in three dimen-

sions (Wood, 1964a,b), layer space groups (Shubnikov & Koptsik,

1974), layer groups (Köhler, 1977; Koch & Fischer, 1978;

Vainshtein, 1981; Goodman, 1984; Litvin, 1989), two-dimensional

(subperiodic) groups in three-dimensional space (Brown et al.,

1978) and plane space groups in three dimensions (Grell et al.,

1989).

Rod-group nomenclature includes Kettengruppen (Hermann,

1929a,b), eindimensionalen Raumgruppen (Alexander, 1929,

1934), (crystallographic) line groups in three dimensions (IT,

1952; Opechowski, 1986), rod groups (Belov, 1956; Vujicic et al.,

1977; Köhler, 1977; Koch & Fischer, 1978), Balkengruppen
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(Niggli, 1959; Chapuis, 1966), stem groups (Galyarskii &

Zamorzaev, 1965a,b), linear space groups (Bohm & Dornberger-

Schiff, 1966) and one-dimensional (subperiodic) groups in three

dimensions (Brown et al., 1978).

Frieze-group nomenclature includes Bortenornamente

(Speiser, 1927), Bandgruppen (Niggli, 1959), line groups

(borders) in two dimensions (IT, 1952), line groups in a plane

(Belov, 1956), eindimensionale ‘zweifarbige’ Gruppen (Nowacki,

1960), groups of one-sided bands (Shubnikov & Koptsik, 1974),

ribbon groups (Köhler, 1977), one-dimensional (subperiodic)

groups in two-dimensional space (Brown et al., 1978) and groups

of borders (Vainshtein, 1981).

1.2.17. Symbols

The following general criterion was used in selecting the sets of

symbols for the subperiodic groups: consistency with the symbols

used for the space groups given in IT A (2005). Specific criteria

following from this general criterion are as follows:

(1) The symbols of subperiodic groups are to be of the

Hermann–Mauguin (international) type. This is the type of

symbol used for space groups in IT A (2005).

(2) A symbol of a subperiodic group is to consist of a letter

indicating the lattice centring type followed by a set of characters

indicating symmetry elements. This is the format of the

Hermann–Mauguin (international) space-group symbols in IT A

(2005).

(3) The sets of symmetry directions and their sequences in the

symbols of the subperiodic groups are those of the corresponding

space groups. Layer and rod groups are three-dimensional

subperiodic groups of the three-dimensional space groups, and

frieze groups are two-dimensional subperiodic groups of the two-

dimensional space groups. Consequently, the symmetry direc-

tions and sequence of the characters indicating symmetry

elements in layer and rod groups are those of the three-

dimensional space groups; in frieze groups, they are those of the

two-dimensional space groups, see Table 1.2.4.1 above and Table

2.2.4.1 of IT A (2005). Layer groups appear as subgroups of

three-dimensional space groups, as factor groups of three-

dimensional reducible space groups (Kopský, 1986, 1988, 1989a,b,

1993; Fuksa & Kopský, 1993) and as the symmetries of planes

which transect a crystal of a given three-dimensional space-group

symmetry. For example, the layer group pmm2 is a subgroup of

the three-dimensional space group Pmm2; is isomorphic to the

factor group Pmm2/Tz of the three-dimensional space group

Pmm2, where Tz is the translational subgroup of all translations

along the z axis; and is the symmetry of the plane transecting a

crystal of three-dimensional space-group symmetry Pmm2,

perpendicular to the z axis, at z = 0. In these examples, the

symbols for the three-dimensional space group and the related

subperiodic layer group differ only in the letter indicating the

lattice type.

A survey of sets of symbols that have been used for the

subperiodic groups is given below. Considering these sets of

symbols in relation to the above criteria leads to the sets of

symbols for subperiodic groups used in Parts 2, 3 and 4.

1.2.17.1. Frieze groups

A list of sets of symbols for the frieze groups is given in Table

1.2.17.1. The information provided in this table is as follows:

Columns 1 and 2: sequential numbering and symbols used in

Part 2.

Columns 3, 4 and 5: symbols listed by Opechowski (1986).

Column 6: symbols listed by Shubnikov & Koptsik (1974).

Column 7: symbols listed by Vainshtein (1981).

Columns 8 and 9: sequential numbering and symbols listed by

Bohm & Dornberger-Schiff (1967).

Column 10: symbols listed by Lockwood & Macmillan (1978).

Column 11: symbols listed by Shubnikov & Koptsik (1974).

Sets of symbols which are of a non-Hermann–Mauguin

(international) type are the set of symbols of the ‘black and

white’ symmetry type (column 3) and the sets of symbols in

columns 6 and 7. The sets of symbols in columns 4, 5 and 11 do

not follow the sequence of symmetry directions used for two-

dimensional space groups. The sets of symbols in columns 3, 4, 5

and 10 do not use a lower-case script p to denote a one-

dimensional lattice. The set of symbols in column 9 uses

parentheses and square brackets to denote specific symmetry

directions. The symbol g is used in Part 1 to denote a glide line, a

standard symbol for two-dimensional space groups (IT A, 2005).

A letter identical with a basis-vector symbol, e.g. a or c, is not

used to denote a glide line, as is done in the symbols of columns 5,

6, 7, 9 and 11, as such a letter is a standard notation for a three-

dimensional glide plane (IT A, 2005).

Columns 2 and 3 show the isomorphism between frieze groups

and one-dimensional magnetic space groups. The one-

dimensional space groups are denoted by p1 and p �1. The list of

symbols in column 3, on replacing r with p, is the list of one-

dimensional magnetic space groups. The isomorphism between

these two sets of groups interexchanges the elements �1 and 10 of

the one-dimensional magnetic space groups and, respectively, the

elements mx and my, mirror lines perpendicular to the [10] and

[01] directions, of the frieze groups.

1.2.17.2. Rod groups

A list of sets of symbols for the rod groups is given in Table

1.2.17.2. The information provided in the columns of this table is

as follows:

Columns 1 and 2: sequential numbering and symbols used in

Part 3.

Columns 3 and 4: sequential numbering and symbols listed by

Bohm & Dornberger-Schiff (1966, 1967).

Columns 5, 6 and 7: sequential numbering and two sets of

symbols listed by Shubnikov & Koptsik (1974).
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Table 1.2.17.1. Frieze-group symbols

1 2 3 4 5 6 7 8 9 10 11

Oblique 1 p1 r1 r1 r111 ðaÞ t 1 p[1](1)1 r1 p1
2 p211 r�10 r112 r112 ðaÞ : 2 t : 2 5 p[2](1)1 r2 p112

Rectangular 3 p1m1 r�1 r1m rm11 ðaÞ : m t : m 3 p[1](1)m r1m pm11
4 p11m r110 rm r1m1 ðaÞ � m t � m 2 p[1](m)1 r11m p1m1

5 p11g r21 rg r1c1 ðaÞ � �a t � a 4 p[1](c)1 r11g p1a1

6 p2mm r�110 rmm2 rmm2 ðaÞ : 2 � m t : 2 � m 6 p[2](m)m r2mm pmm2

7 p2mg r2�1 rgm2 rmc2 ðaÞ : 2 � �a t : 2 � a 7 p[2](c)m r2mg pma2
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Table 1.2.17.2. Rod-group symbols

1 2 3 4 5 6 7 8 9

Triclinic 1 p1 1 Pð11Þ1 1 ðaÞ � 1 p1 r1 1P1

2 p �1 2 Pð�1�1Þ�1 7 ðaÞ � �1 p�1 r�1 1P�1

Monoclinic/inclined 3 p211 6 Pð12Þ1 2 ðaÞ : 2 p112 r112 1P2

4 pm11 3 Pð1mÞ1 22 ðaÞ � m p11m r1m1 mP1

5 pc11 5 Pð1cÞ1 24 ðaÞ � �a p11a r1c1 gP1

6 p2=m11 9 Pð12=mÞ1 25 ðaÞ : 2 : m p112=m r12=m1 mP2

7 p2=c11 12 Pð12=cÞ1 28 ðaÞ : 2 : �a p112=a r12=c1 gP2

Monoclinic/orthogonal 8 p112 7 Pð11Þ2 3 ðaÞ � 2 p211 r211 2P1

9 p1121 8 Pð11Þ21 8 ðaÞ � 21 p21 r21 21P1

10 p11m 4 Pð11Þm 23 ðaÞ : m pm11 rm11 1Pm

11 p112=m 10 Pð11Þ2=m 26 ðaÞ � 2 : m p2=m11 r2=m11 2Pm

12 p1121=m 11 Pð11Þ21=m 27 ðaÞ � 21 : m p21=m11 r21=m11 21Pm

Orthorhombic 13 p222 18 Pð22Þ2 61 ðaÞ � 2 : 2 p222 r222 2P22

14 p2221 19 Pð22Þ21 62 ðaÞ � 21 : 2 p2122 r2122 21P22

15 pmm2 13 PðmmÞ2 34 ðaÞ � 2 � m p2mm r2mm 2mmP1

16 pcc2 16 PðccÞ2 35 ðaÞ � 2 � �a p2aa r2cc 2ggP1

17 pmc21 15 PðmcÞ21 36 ðaÞ � 21 � m p21ma r21mc 21mgP1

18 p2mm 14 Pð2mÞm 33 ðaÞ : 2 � m pmma rmm2 mPm2

19 p2cm 17 Pð2cÞm 37 ðaÞ : 2 � �a pma2 rmc2 gPm2

20 pmmm 20 Pð2=m2=mÞ2=m 46 ðaÞ � m � 2 : m pmmm r2=m2=m2=m mmPm

21 pccm 21 Pð2=c2=cÞ2=m 47 ðaÞ � �a � 2 : m pmaa r2=m2=c2=c ggPm

22 pmcm 22 Pð2=m2=cÞ21=m 48 ðaÞ � m � 21 : m pmma r21=m2=m2=c mgPm

Tetragonal 23 p4 26 P4ð11Þ 5 ðaÞ � 4 p4 r4 4P1

24 p41 27 P41ð11Þ 11 ðaÞ � 41 p41 r41 41P1

25 p42 28 P42ð11Þ 12 ðaÞ � 42 p42 r42 42P1

26 p43 29 P43ð11Þ 13 ðaÞ � 43 p43 r43 43P1

27 p �4 23 P�4ð11Þ 20 ðaÞ � �4 p�4 r�4 1P�4

28 p4=m 30 P4=mð11Þ 29 ðaÞ � 4 : m p4=m r4=m 4Pm

29 p42=m 31 P42=mð11Þ 30 ðaÞ � 42 : m p42=m r42=m 42Pm

30 p422 35 P4ð22Þ 66 ðaÞ � 4 : 2 p422 r422 4P22

31 p4122 36 P41ð22Þ 67 ðaÞ � 41 : 2 p4122 r4122 41P22

32 p4222 37 P42ð22Þ 68 ðaÞ � 42 : 2 p4222 r4222 42P22

33 p4322 38 P43ð22Þ 69 ðaÞ � 43 : 2 p4322 r4322 43P22

34 p4mm 32 P4ðmmÞ 40 ðaÞ � 4 � m p4mm r4mm 4mmP1

35 p42cm 33 P42ðcmÞ 42 ðaÞ � 42 � m p42ma r42mc 42mgP1

36 p4cc 34 P4ðccÞ 41 ðaÞ � 4 � �a p4aa r4cc 4ggP1

37 p �42m 24 P�4ð2mÞ 49 ðaÞ � �4 � m p�42m r�4m2 mP�42

38 p �42c 25 P�4ð2cÞ 50 ðaÞ � �4 � �a p�42a r�4c2 gP�42

39 p4=mmm 39 P4=mð2=m2=mÞ 53 ðaÞ � m � 4 : m p4=mmm r4=m2=m2=m 4mmPm

40 p4=mmc 40 P4=mð2=c2=cÞ 54 ðaÞ � �a � 4 : m p4=maa r4=m2=c2=c 4ggPm

41 p42=mmc 41 P42=mð2=m2=cÞ 55 ðaÞ � m � 42 : m p42=mma r42=m2=m2=c 42mgPm

Trigonal 42 p3 42 P3ð11Þ 4 ðaÞ � 3 p3 r3 3P1

43 p31 43 P31ð11Þ 9 ðaÞ � 31 p31 r31 31P1

44 p32 44 P32ð11Þ 10 ðaÞ � 32 p32 r32 32P1

45 p �3 45 P�3ð11Þ 19 ðaÞ � �6 p�3 r�3 3P�1

46 p312 48 P3ð21Þ 63 ðaÞ � 3 : 2 p32 r32 3P2

47 p3112 49 P31ð21Þ 64 ðaÞ � 31 : 2 p312 r312 31P2

48 p3212 50 P32ð21Þ 65 ðaÞ � 32 : 2 p322 r322 32P2

49 p3m1 46 P3ðm1Þ 38 ðaÞ � 3 � m p3m r3m 3mP1

50 p3c1 47 P3ðc1Þ 39 ðaÞ � 3 � �a p3a r3c 3gP1

51 p �31m 51 P�3ðm1Þ 59 ðaÞ � �6 � m p�3m r�32=m 3mP�12

52 p �31c 52 P�3ðc1Þ 60 ðaÞ � �6 � �a p�3a r�32=c 3gP�12

Hexagonal 53 p6 56 P6ð11Þ 6 ðaÞ � 6 p6 r6 6P1

54 p61 57 P61ð11Þ 14 ðaÞ � 61 p61 r61 61P1

55 p62 59 P62ð11Þ 15 ðaÞ � 62 p62 r62 62P1

56 p63 61 P63ð11Þ 16 ðaÞ � 63 p63 r63 63P1

57 p64 60 P64ð11Þ 17 ðaÞ � 64 p64 r64 64P1

58 p65 58 P65ð11Þ 18 ðaÞ � 65 p65 r65 65P1

59 p �6 53 P�6ð11Þ 21 ðaÞ � 3 : m p�6 r�6 3Pm

60 p6=m 62 P6=mð11Þ 31 ðaÞ � 6 : m p6=m r6=m 6Pm

61 p63=m 63 P63=mð11Þ 32 ðaÞ � 63 : m p63=m r63=m 63Pm

62 p622 67 P6ð22Þ 70 ðaÞ � 6 : 2 p622 r622 6P22

63 p6122 68 P61ð22Þ 71 ðaÞ � 61 : 2 p6122 r6122 61P22

64 p6222 70 P62ð22Þ 72 ðaÞ � 62 : 2 p6222 r6222 62P22
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Column 8: symbols listed by Opechowski (1986).

Column 9: symbols listed by Niggli (Chapuis, 1966).

Sets of symbols which are of a non-Hermann–Mauguin

(international) type are the set of symbols in column 6 and the

Niggli-type set of symbols in column 9. The set of symbols in

column 8 does not use the lower-case script letter p, as does IT A

(2005), to denote a one-dimensional lattice. The order of the

characters indicating symmetry elements in the set of symbols in

column 7 does not follow the sequence of symmetry directions

used for three-dimensional space groups. The set of symbols in

column 4 have the characters indicating symmetry elements along

non-lattice directions enclosed in parentheses, and do not use a

lower-case script letter to denote the one-dimensional lattice.

Lastly, the set of symbols in column 4, without the parentheses

and with the one-dimensional lattice denoted by a lower-case

script p, are identical with the symbols in Part 3, or in some cases

are the second setting of rod groups whose symbols are given in

Part 3. These second-setting symbols are included in the

symmetry diagrams of the rod groups.

1.2.17.3. Layer groups

A list of sets of symbols for the layer groups is given in Table

1.2.17.3. The information provided in the columns of this table is

as follows:

Columns 1 and 2: sequential numbering and symbols used in

Part 4.

Columns 3 and 4: sequential numbering and symbols listed by

Wood (1964a,b) and Litvin & Wike (1991).

Columns 5 and 6: sequential numbering and symbols listed by

Bohm & Dornberger-Schiff (1966, 1967).

Columns 7 and 8: sequential numbering and symbols listed by

Shubnikov & Koptsik (1974) and Vainshtein (1981).

Column 9: symbols listed by Holser (1958).

Column 10: sequential numbering listed by Weber (1929).

Column 11: symbols listed by Hermann (1929a,b).

Column 12: symbols listed by Alexander & Herrmann

(1929a,b).

Column 13: symbols listed by Niggli (Wood, 1964a,b).

Column 14: symbols listed by Shubnikov & Koptsik (1974).

Columns 15 and 16: symbols listed by Aroyo & Wondratschek

(1987).

Column 17: symbols listed by Belov et al. (1957a,b).

Columns 18 and 19: symbols and sequential numbering listed

by Belov & Tarkhova (1956a,b,c,d).

Columns 20 and 21: symbols listed by Cochran as listed,

respectively, by Cochran (1952) and Belov & Tarkhova

(1956a,b,c,d).

Column 22: symbols listed by Opechowski (1986).

Column 23: symbols listed by Grunbaum & Shephard (1987).

Column 24: symbols listed by Woods (1935a,b,c, 1936).

Column 25: symbols listed by Coxeter (1986).

There is also a notation for layer groups, introduced by

Janovec (1981), in which all elements in the group symbol which

change the direction of the normal to the plane containing the

translations are underlined, e.g. p4/m. However, we know of no

listing of all layer-group types in this notation.

Sets of symbols which are of a non-Hermann–Mauguin

(international) type are the sets of symbols of the Schoenflies

type (columns 11 and 12) and symbols of the ‘black and white’

symmetry type (columns 16, 17, 18, 20, 21, 22, 24 and 25).

Additional non-Hermann–Mauguin (international) type sets of

symbols are those in columns 14 and 23.

Sets of symbols which do not begin with a letter indicating the

lattice centring type are the sets of symbols of the Niggli type

(columns 13 and 15). The order of the characters indicating

symmetry elements in the sets of symbols in columns 4 and 9 does

not follow the sequence of symmetry directions used for three-

dimensional space groups. The set of symbols in column 6 uses

parentheses to denote a symmetry direction which is not a lattice

direction. In addition, the set of symbols in column 6 uses upper-

case letters to denote the two-dimensional lattice of the layer

group, where as in IT A (2005) upper-case letters denote three-

dimensional lattices.

The symbols in column 8 are either identical with or, in some

monoclinic and orthorhombic cases, are the second-setting or

alternative-cell-choice symbols of the layer groups whose

symbols are given in Part 4. These second-setting and alternative-

cell-choice symbols are included in the symmetry diagrams of the

layer groups.

The isomorphism between layer groups and two-dimensional

magnetic space groups can be seen in Table 1.2.17.3. The set of

symbols which we use for layer groups is given in column 2. The

sets of symbols in columns 16, 17 and 22 are sets of symbols for

the two-dimensional magnetic space groups. The basic relation-

ship between these two sets of groups is the interexchanging of

the magnetic symmetry element 10 and the layer symmetry

element mz. A detailed discussion of the relationship between

these two sets of groups has been given by Opechowski (1986).
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1 2 3 4 5 6 7 8 9

65 p6322 72 P63ð22Þ 73 ðaÞ � 63 : 2 p6322 r6322 63P22

66 p6422 71 P64ð22Þ 74 ðaÞ � 64 : 2 p6422 r6422 64P22

67 p6522 69 P65ð22Þ 75 ðaÞ � 65 : 2 p6522 r6522 65P22

68 p6mm 64 P6ðmmÞ 43 ðaÞ � 6 � m p6mm r6mm 6mmP1

69 p6cc 65 P6ðccÞ 44 ðaÞ � 6 � �a p6aa r6cc 6ggP1

70 p63mc 66 P63ðcmÞ 45 ðaÞ � 63 � m p63ma r63mc 63mgP1

71 p �6m2 54 P�6ðm2Þ 51 ðaÞ � m � 3 : m p�6m2 r�6m2 3mPm2

72 p �6c2 55 P�6ðc2Þ 52 ðaÞ � �a � 3 : m p�6a2 r�6c2 3gPm2

73 p6=mmm 73 P6=mð2=m2=mÞ 56 ðaÞ � m � 6 : m p6=mmm r6=m2=m2=m 6mmPm

74 p6=mcc 74 P6=mð2=c2=cÞ 57 ðaÞ � �a � 6 : m p6=maa r6=m2=c2=c 6ggPm

75 p63=mmc 75 P63=mð2=c2=mÞ 58 ðaÞ � m � 63 : m p63=mma r63=m2=m2=c 63mgPm

Table 1.2.17.2 (cont.)
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Table 1.2.17.3. Layer-group symbols

(a) Columns 1–9.

1 2 3 4 5 6 7 8 9

Triclinic/oblique 1 p1 1 P1 1 P11ð1Þ 1 p1 p1

2 p�1 2 P�1 2 P�1�1ð�1Þ 3 p�1 p�1

Monoclinic/oblique 3 p112 3 P211 9 P11ð2Þ 5 p112 p21

4 p11m 4 Pm11 4 P11ðmÞ 2 p11m pm1

5 p11a 5 Pb11 5 P11ðbÞ 4 p11b pa1

6 p112=m 6 P2=m11 13 P11ð2=mÞ 6 p112=m p2=m1

7 p112=a 7 P2=b11 17 P11ð2=bÞ 7 p112=b p2=a1

Monoclinic/rectangular 8 p211 8 P112 8 P12ð1Þ 14 p121 p12

9 p2111 9 P1121 10 P121ð1Þ 15 p1211 p121

10 c211 10 C112 11 C12ð1Þ 16 c121 c12

11 pm11 11 P11m 3 P1mð1Þ 8 p1m1 p1m

12 pb11 12 P11a 5 P1að1Þ 10 p1a1 p1b

13 cm11 13 C11m 7 C1mð1Þ 12 c1m1 c1m

14 p2=m11 14 P112=m 12 P12=mð1Þ 17 p12=m1 p12=m

15 p21=m11 15 P1121=m 14 P121=mð1Þ 18 p121=m1 p121=m

16 p2=b11 17 P112=a 16 P12=að1Þ 20 p12=a1 p12=b

17 p21=b11 18 P1121=a 18 P121=að1Þ 21 p121=a1 p121=b

18 c2=m11 16 C112=m 15 C12=mð1Þ 19 c12=m1 c12=m

Orthorhombic/rectangular 19 p222 19 P222 33 P22ð2Þ 37 p222 p222

20 p2122 20 P2221 34 P212ð2Þ 38 p2122 p2221
21 p21212 21 P22121 35 P2121ð2Þ 39 p21212 p22121

22 c222 22 C222 36 C22ð2Þ 40 c222 c222

23 pmm2 23 P2mm 19 Pmmð2Þ 22 pmm2 p2mm

24 pma2 28 P2ma 24 Pmað2Þ 24 pbm2 p2ma

25 pba2 33 P2ba 29 Pbað2Þ 26 pba2 p2ba

26 cmm2 34 C2mm 30 Cmmð2Þ 28 cmm2 c2mm

27 pm2m 24 Pmm2 20 P2mðmÞ 9 p2mm pm2m

28 pm21b 26 Pbm21 21 P21mðaÞ 30 p21ma pa21m

29 pb21m 25 Pm21a 22 P21aðmÞ 11 p21am pm21a

30 pb2b 27 Pbb2 23 P2aðaÞ 31 p2aa pa2a

31 pm2a 29 Pam2 25 P2mðbÞ 32 p2mb pb2m

32 pm21n 32 Pnm21 28 P21mðnÞ 35 p21mn pn21m

33 pb21a 30 Pab21 26 P21aðbÞ 33 p21ab pb21a

34 pb2n 31 Pnb2 27 P2aðnÞ 34 p2an pn2a

35 cm2m 35 Cmm2 31 C2mðmÞ 13 c2mm cm2m

36 cm2e 36 Cam2 32 Cm2ðaÞ 36 c2mb cb2m

37 pmmm 37 P2=m2=m2=m 37 P2=m2=mð2=mÞ 23 pmmm p2=m2=m2=m

38 pmaa 38 P2=a2=m2=a 38 P2=m2=að2=aÞ 41 pmaa p2=a2=m2=a

39 pban 39 P2=n2=b2=a 39 P2=b2=að2=nÞ 42 pban p2=n2=b2=a

40 pmam 40 P2=m21=m2=a 41 P2=b21=mð2=mÞ 25 pbmm p2=m21=m2=a

41 pmma 41 P2=a21=m2=m 40 P21=m2=mð2=aÞ 43 pmma p2=a21=m2=m

42 pman 42 P2=n2=m21=a 42 P21=b2=mð2=nÞ 44 pbmn p2=n2=m21=a

43 pbaa 43 P2=a2=b21=a 43 P2=b21=að2=aÞ 45 pbaa p2=a2=b21=a

44 pbam 44 P2=m21=b21=a 44 P21=b21=að2=mÞ 27 pbam p2=m21=b21=a

45 pbma 45 P2=a21=b21=m 45 P21=m21=að2=bÞ 46 pmab p2=a21=b21=m

46 pmmn 46 P2=n21=m21=m 46 P21=m21=mð2=nÞ 47 pmmn p2=n21=m21=m

47 cmmm 47 C2=m2=m2=m 47 C2=m2=mð2=mÞ 29 cmmm c2=m2=m2=m

48 cmme 48 C2=a2=m2=m 48 C2=m2=mð2=aÞ 48 cmma c2=a2=m2=m

Tetragonal/square 49 p4 49 P4 54 Pð4Þ11 50 p4 p4

50 p�4 50 P�4 49 Pð�4Þ11 49 p�4 p�4

51 p4=m 51 P4=m 55 Pð4=mÞ11 51 p4=m p4=m

52 p4=n 52 P4=n 56 Pð4=nÞ11 57 p4=n p4=n

53 p422 53 P422 59 Pð4Þ22 55 p422 p422

54 p4212 54 P4212 60 Pð4Þ212 56 p4212 p4212

55 p4mm 55 P4mm 57 Pð4Þmm 52 p4mm p4mm

56 p4bm 56 P4bm 58 Pð4Þbm 59 p4bm p4bm

57 p�42m 57 P�42m 50 Pð�4Þ2m 54 p�42m p�42m

58 p�421m 58 P�421m 51 Pð�4Þ21m 60 p�421m p�421m

59 p�4m2 59 P�4m2 52 Pð�4Þm2 61 p�4m2 p�4m2

60 p�4b2 60 P�4b2 53 Pð�4Þb2 64 p�4b2 p�4b2

61 p4=mmm 61 P4=m2=m2=m 61 Pð4=mÞ2=m2=m 53 p4=mmm p4=m2=m2=m

62 p4=nbm 62 P4=n2=b2=m 62 Pð4=nÞ2=b2=m 62 p4=nbm p4=n2=b2=m
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1 2 3 4 5 6 7 8 9

63 p4=mbm 63 P4=m21=b2=m 63 Pð4=mÞ21=b2=m 58 p4=mbm p4=m21=b2=m

64 p4=nmm 64 P4=n21=m2=m 64 Pð4=nÞ21=m2=m 63 p4=nmm p4=n21=m2=m

Trigonal/hexagonal 65 p3 65 P3 65 Pð3Þ11 65 p3 p3

66 p�3 66 P�3 66 Pð�3Þ11 67 p�3 p�3

67 p312 67 P312 70 Pð3Þ12 72 p312 p312

68 p321 68 P321 69 Pð3Þ21 73 p321 p321

69 p3m1 69 P3m1 67 Pð3Þm1 68 p3m1 p3m1

70 p31m 70 P31m 68 Pð3Þ1m 70 p31m p31m

71 p�31m 71 P�312=m 72 Pð�3Þ1m 74 p�31m p�312=m

72 p�3m1 72 P�32=m1 71 Pð�3Þm1 75 p�3m1 p�32=m1

Hexagonal/hexagonal 73 p6 73 P6 76 Pð6Þ11 76 p6 p6

74 p�6 74 P�6 73 Pð�6Þ11 66 p�6 p�6

75 p6=m 75 P6=m 77 Pð6=mÞ11 77 p6=m p6=m

76 p622 76 P622 79 Pð6Þ22 80 p622 p622

77 p6mm 77 P6mm 78 Pð6Þmm 78 p6mm p6mm

78 p�6m2 78 P�6m2 74 Pð�6Þm2 69 p�6m2 p�6m2

79 p�62m 79 P�62m 75 Pð�6Þ2m 71 p�62m p�62m

80 p6=mmm 80 P6=m2=m2=m 80 Pð6=mÞ2=m2=m 79 p6=mmm p6=m2=m2=m

(b) Columns 10–17.

1 10 11 12 13 14 15 16 17

Triclinic/oblique 1 1 C1 �p C1
1 1P1 ða=bÞ � 1 1p1 p1 p1

2 2 S2 �p C1
i 1P�1 ða=bÞ � �1 1p�1 p20 p20

Monoclinic/oblique 3 8 C2 �p C1
2 1P2 ða=bÞ : 2 1p112 p2 p2

4 3 C1h �p� C1
1h mP1 ða=bÞ � m mp1 p	1

5 4 C1h �p� C2
1h aP1 ða=bÞ � �b bp1 p0

b01 p0
b1

6 12 C2h �p� C1
2h mP2 ða=bÞ � m : 2 mp112 p	2

7 13 C2h �p� C2
2h aP2 ða=bÞ � �b : 2 bp112 p0

b02 p0
b2

Monoclinic/rectangular 8 9 D1 �p1 C2
2 1P12 ða : bÞ � 2 1p12 p1m01 pm0

9 10 D1 �p2 C3
2 1P121 ða : bÞ � 21 1p121 p1g01 pg0

10 11 D1 �c1 C4
2 1C12 aþb

2 =a : b
� �

� 2 1c12 c1m01 cm0

11 5 C1v �p� C3
1h 1P1m ða : bÞ : m 1p1m p11m pm

12 6 C1v �p� C4
1h 1P1g ða : bÞ : �a 1p1a p11g pg

13 7 C1v �c� C5
1h 1C1m aþb

2 =a : b
� �

: m 1c1m c11m cm

14 14 D1d �p�1 C3
2h 1P12=m ða : bÞ � 2 : m 1p12=m p20m0m pm0m

15 15 D1d �p�2 C5
2h 1P121=m ða : bÞ � 21 : m 1p121=m p20g0m pg0m

16 18 D1d �p�2 C6
2h 1P12=g ða : bÞ � 2 � �a 1p121=a p20g0g pg0g

17 17 D1d �p�1 C4
2h 1P121=g ða : bÞ � 21 : �a 1p12=a p20m0g pm0g

18 16 D1d �c�1 C7
2h 1C12=m aþb

2 =a : b
� �

� 2 : m 1c12=m c20m0m cm0m

Orthorhombic/rectangular 19 33 D2 �p11 V1 1P222 ða : bÞ : 2 : 2 1p222 p2m0m0 pm0m0

20 34 D2 �p12 V3 1P2221 ða : bÞ : 2 : 21 1p2212 p2g0m0 pm0g0

21 35 D2 �p22 V2 1P22121 ða : bÞ � 21 : 21 1p21212 p2g0g0 pg0g0

22 36 D2 �c11 V4 1C222 aþb
2 =a : b

� �
: 2 : 2 1c222 c2m0m0 cm0m0

23 19 C2v �p�� C1
2v 1P2mm ða : bÞ : 2 � m 1pmm2 p2mm pmm

24 20 C2v �p�� C2
2v 1P2mg ða : bÞ : 2 � �b 1pma2 p2mg pmg

25 21 C2v �p�� C10
2v 1P2gg ða : bÞ : �a : �b 1pba2 p2gg pgg

26 22 C2v �c�� C3
2v 1C2mm aþb

2 =a : b
� �

: m � 2 1cmm2 c2mm cmm

27 23 D1h �p�� C4
2v mP12m ða : bÞ � m � 2 mpm2 p	1m1

28 25 D1h �p�� C5
2v aP121m ða : bÞ : m � 21 bpm21 p0

b01m1 p0
a1m

29 24 D1h �p�� C7
2v mP121g ða : bÞ � m � 21 mpb21 p	1g1

30 26 D1h �p�� C6
2v aP12g ða : bÞ � �a � 2 bpb2 p0

b01m01 p0
a1g

31 27 D1h �p�� C11
2v bP12m ða : bÞ � �b � 2 apm2 p0

a01m1 p0
b1m

32 30 D1h �p�� C13
2v nP121m ða : bÞ � ab � 21 npm21 c01m1 p0

c1m

33 28 D1h �p�� C14
2v bP121g ða : bÞ � �b : �a apb21 p0

a01g1 p0
b1g

34 29 D1h �p�� C12
2v nP12g ða : bÞ � ab � 2 npb2 c01m01 p0

c1m0

35 31 D1h �c�� C8
2v mC12m aþb

2 =a : b
� �

� m � 2 mcm2 c	1m1

36 32 D1h �c�� C9
2v aC12m aþb

2 =a : b
� �

� �b � 2 acm2 p0
a0b01m1 c01m

37 37 D2h �p��� V1
h mP2mm ða : bÞ � m : 2 � m mp2=m2=m2 p	2mm

38 38 D2h �p��� V5
h aP2mg ða : bÞ � �a : 2 � �a ip2=m2=a2 p0

a02mg p0
amg

39 39 D2h �p��� V6
h nP2gg ða : bÞ � ab : 2 � a np2=b2=a2 c02m0m0 p0

cm0m0

40 40 D2h �p��� V3
h mP2mg ða : bÞ � m : 2 � �b np21=m2=a2 p	2mg

41 41 D2h �p��� V9
h aP2mm ða : bÞ � �a : 2 � m ap21=m2=m2 p0

a02mm p0
bmm

42 42 D2h �p��� V11
h nP2mg ða : bÞ � ab : 2 � b np2=m21=a2 c02mm0 p0

cm0m
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1 10 11 12 13 14 15 16 17

43 43 D2h �p��� V10
h aP2gg ða : bÞ � �a � 2 : �b ap2=b21=a2 p0

a02gg p0
bgg

44 44 D2h �p��� V2
h mP2gg ða : bÞ � m : �a : �b np21=b21=a2 p	2gg

45 45 D2h �p��� V7
h aP2gm ða : bÞ � �b : 2 � �a ap21=b21=m2 p0

a02gm p0
bmg

46 46 D2h �p��� V8
h nP2mm ða : bÞ � ab : 2 � m np21=m21=m2 c02mm p0

cmm

47 47 D2h �c��� V4
h mC2mm aþb

2 =a : b
� �

� m : 2 � m mc2=m2=m2 c	2mm

48 48 D2h �c��� V12
h aC2mm aþb

2 =a : b
� �

� �a : 2 � m ac2=m2=m2 p0
a0b02mm c0mm

Tetragonal/square 49 58 C4 �p C1
4 1P4 ða : aÞ : 4 1p4 p4 p4

50 57 S4 �p S1
4 1P�4 ða : aÞ : �4 1p�4 p40 p40

51 61 C4h �p� C1
4h mP4 ða : aÞ : 4 : m mp4 p	4

52 62 C4h �p� C2
4h nP4 ða : aÞ : 4 : ab np4 c04 p04

53 67 D4 �p11 D1
4 1P422 ða : aÞ : 4 : 2 1p422 p4m0m0 p4m0m0

54 68 D4 �p21 D2
4 1P4212 ða : aÞ : 4 : 21 1p4212 p4g0m0 p4g0m0

55 59 C4v �p�� C1
4v 1P4mm ða : aÞ : 4 � m 1p4mm p4mm p4mm

56 60 C4v �p�� C2
4v 1P4gm ða : aÞ : 4� b 1p4bm p4gm p4gm

57 63 D2d �p�1 V1
d 1P�42m ða : aÞ : �4 : 2 1p�42m p40m0m p40m0m

58 64 D2d �p�2 V2
d 1P�421m ða : aÞ : �4� 21 1p�421m p40g0m p40g0m

59 65 D2d �c�1 V3
d 1P�4m2 ða : aÞ : �4 � m 1p�4m2 p40mm0 p40mm0

60 66 D2d �c�1 V4
d 1P�4g2 ða : aÞ : �4� �b 1p�4b2 p40gm0 p40gm0

61 69 D4h �p��� D1
4h mP4mm ða : aÞ � m : 4 � m mp42=m2=m p	4mm

62 70 D4h �p��� D2
4h nP4gm ða : aÞ : ab : 4� b np42=b2=m c04m0m p04gm

63 71 D4h �p��� D3
4h mP4gm ða : aÞ � m : 4� b mp421=b2=m p	4gm

64 72 D4h �p��� D4
4h nP4mm ða : aÞ � ab : 4 � m np421=m2=m c04mm p04mm

Trigonal/hexagonal 65 49 C3 �c C1
3 1P3 ða=aÞ : 3 1p3 p3 p3

66 50 S6 �p C1
3i 1P�3 ða=aÞ : �3 1p�3 p60 p60

67 54 D3 �c1 D1
3 1P312 ða=aÞ : 2 : 3 1p312 p3m01 p3m01

68 53 D3
�h1 D2

3 1P321 ða=aÞ � 2 : 3 1p321 p31m0 p31m0

69 51 C3v �c� C2
3v 1P3m1 ða=aÞ : m � 3 1p3m1 p3m1 p3m1

70 52 C3v
�h� C1

3v 1P31m ða=aÞ � m � 3 1p31m p31m p31m

71 55 D3d �c�1 D2
3d 1P�31m ða=aÞ � m � �6 1p�312=m p60m0m p60m0m

72 56 D3d
�h�1 D1

3d 1P�3m1 ða=aÞ : m � �6 1p�32=m1 p60mm0 p60mm0

Hexagonal/hexagonal 73 76 C6 �c C1
6 1P6 ða=aÞ : 6 1p6 p6 p6

74 73 C3h �c� C1
3h mP3 ða=aÞ : 3 : m mp3 p	3

75 78 C6h �c� C1
6h mP6 ða=aÞ � m : 6 mp6 p	6

76 79 D6 �c11 D1
6 1P622 ða=aÞ � 2 : 6 1p622 p6m0m0 p6m0m0

77 77 C6v �c�� C1
6v 1P6mm ða=aÞ : m � 6 1p6mm p6mm p6mm

78 74 D3h �c�� D1
3h mP3m2 ða=aÞ : m � 3 : m mp3m2 p	3m1

79 75 D3h
�h�� D2

3h mP32m ða=aÞ � m : 3 � m mp32m p	31m

80 80 D6h �c��� D1
6h mP6mm ða=aÞ � m : 6 � m mp6mm p	6mm

(c) Columns 18–25.

1 18 19 20 21 22 23 24 25

Triclinic/oblique 1 p1 47 p1

2 p20 1 p20 p2� p20 p2½2�1 2011 p2=p1

Monoclinic/oblique 3 p2 48 p2

4 p10 64 p110

5 p0
b1 2 pt0 pt� p2b1 p1½2� b11 p1=p1

6 p210 65 p210

7 p0
b2 3 p2t0 p2t� p2b2 p2½2�2 2=b11 p2=p2

Monoclinic/rectangular 8 pm0 4 pm0 pm� pm0 pm½2�4 1201 pm=p1

9 pg0 5 pg0 pg� pg0 pg½2�1 11201 pg=p1

10 cm0 6 cm0 cm� cm0 cm½2�1 c1120 cm=p1

11 pm 49 pm

12 pg 50 pg

13 cm 51 cm

14 pmm0 14 pmm0 pmm� pm0m pmm½2�2 20202 pmm=pm

15 pmg0 17 pmg0 pmg� pmg0 pmg½2�4 202012 pmg=pm

16 pgg0 18 pgg0 pgg� pgg0 pgg½2�1 2020121 pgg=pg

17 pm0g 16 pm0g pm�g pm0g pmg½2�2 20212
0 pmg=pg

18 cmm0 21 cmm0 cmm� cmm0 cmm½2�2 c20220 cmm=cm

Orthorhombic/rectangular 19 pm0m0 15 pm0m0 pm�m� pm0m0 pmm½2�5 22020 pmm=p2

20 pm0g0 20 pm0g0 pm�g� pm0g0 pmg½2�5 220201 pmg=p2

21 pg0g0 19 pg0g0 pg�g� pg0g0 pgg½2�2 22012
0
1 pgg=p2

22 cm0m0 22 cm0m0 cm�m� cm0m0 cmm½2�4 c22020 cmm=p2
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1 18 19 20 21 22 23 24 25

23 pmm2 52 pmm

24 pmg2 53 pmg

25 pgg2 54 pgg

26 cmm2 55 cmm

27 pm10 66 pm10

28 p0
bm 7 pm þ t0 pm þ t� p2bm pm½2�3 b12 pm=pmðmÞ

29 pg10 67 pg10

30 p0
bg 8 pg þ t0 pg þ t� p2bm0 pm½2�1 b121 pm=pg

31 p0
b1m 9 pm þ m0 pm þ m� p2am pm½2�5 b01m pm=pmðm0Þ

32 p0
cm 11 pm þ g0 pm þ g� cpm cm½2�3 n12 cm=pm

33 p0
b1g 10 pg þ g0 pg þ g� p2ag pg½2�2 b211 pg=pg

34 p0
cg 12 pg þ m0 pg þ m� cpm0 cm½2�2 n121 cm=pg

35 cm10 68 cm10

36 c0m 13 cm þ m0 cm þ m� pcm pm½2�2 ca12 pm=cm

37 pmm210 69 pmm10

38 p0
bgm 25 pg;m þ m0 pg;m þ m� p2amm0 pmm½2�4 a212 pmm=pmg

39 p0
cgg 29 pg þ m0; g þ m0 pg þ m�; g þ m� cpm0m0 cmm½2�1 n2121 cmm=pgg

40 pmg210 70 pmg10

41 p0
bmm 23 pm;m þ m0 pm;m þ m� p2amm pmm½2�1 a22 pmm=pmm

42 p0
cmg 28 pm þ g0; g þ m0 pm þ g�; g þ m� cpmm0 cmm½2�3 n221 cmm=pmg

43 p0
bgg 26 pg; g þ g0 pg; g þ g� p2bm0g pmg½2�3 a2121 pmg=pgg

44 pgg210 71 pgg10

45 p0
bmg 24 pm; g þ g0 pm; g þ g� p2bmg pmg½2�1 b212 pmg=pmg

46 p0
cmm 27 pm þ g0;m þ g0 pm þ g�;m þ g� cpmm cmm½2�5 n22 cmm=pmm

47 cmm210 72 cmm10

48 c0mm 30 cm þ m0;m þ m0 cm þ m�;m þ m� pcmm pmm½2�3 ca22 pmm=cmm

Tetragonal/square 49 p4 56 p4

50 p40 31 p40 p4� p40 p4½2�2 4011 p4=p2

51 p410 73 p410

52 p0
c4 32 p4t0 p4t� pp4 p4½2�1 4=n11 p4=p4

53 p4m0m0 35 p4m0m0 p4m�m� p4m0 pm4½2�2 42020 p4m=p4

54 p4g0m0 38 p4g0m0 p4g�m� p4g0 p4g½2�1 42012
0 p4g=p4

55 p4mm 57 p4m

56 p4gm 58 p4g

57 p40m0m 34 p40m0m p4�m�m p40m0 p4m½2�3 40202 p4m=cmm

58 p40g0m 37 p40g0m p4�g�m p40g0 p4g½2�2 402012 p4g=cmm

59 p40mm0 33 p40mm0 p4�mm� p40m p4m½2�4 40220 p4m=pmm

60 p40gm0 36 p40gm0 p4�gm� p40g p4g½2�3 40212
0 p4g=pgg

61 p4mm10 74 p4m10

62 p0
c4gm 40 p4g þ m0;m þ m0 p4g þ m�;m þ m� pp4m0 p4m½2�1 4=n212 p4m=p4g

63 p4gm10 75 p4g10

64 p0
c4mm 39 p4m þ g0;m þ m0 p4m þ g�;m þ m� pp4m p4m½2�5 4=n22 p4m=p4m

Trigonal/hexagonal 65 p3 59 p3

66 p60 43 p60 p6� p60 p6½2� 60 p6=p3

67 p3m0 41 p3m01 p3m�1 p3m01 p3m1½2� 3120 p3m1=p3

68 p31m0 42 p31m0 p31m� p31m0 p31m½2� 3201 p31m=p3

69 p3m 60 p3m1

70 p31m 61 p31m

71 p60m0m 44 p60m0m p6�m�m p60m0 p6m½2�1 60220 p6m=p31m

72 p60mm0 45 p60mm0 p6�mm� p60m p6m½2�2 60202 p6m=p3m1

Hexagonal/hexagonal 73 p6 62 p6

74 p30 76 p310

75 p610 79 p610

76 p6m0m0 46 p6m0m0 p6m�m� p6m0 p6m½2�3 62020 p6m=p6

77 p6mm 63 p6m

78 p30m 77 p3m110

79 p301m 78 p31m10

80 p6mm10 80 p6m10
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Kopský, V. (1989a). Subperiodic groups as factor groups of reducible
space groups. Acta Cryst. A45, 805–815.

Kopský, V. (1989b). Subperiodic classes of reducible space groups. Acta
Cryst. A45, 815–823.
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Nowacki, W. (1960). Öberblick über ‘zweifarbige’ Symmetriegruppen.
Fortschr. Mineral. 38, 96–107.

Opechowski, W. (1986). Crystallographic and Metacrystallographic
Groups. Amsterdam: North Holland.

Shubnikov, A. V. & Koptsik, V. A. (1974). Symmetry in Science and Art.
New York: Plenum.

Speiser, A. (1927). Die Theorie der Gruppen von endlicher Ordnung, 2nd
ed. Berlin: Springer.

Vainshtein, B. K. (1981). Modern Crystallography I. Berlin: Springer-
Verlag.

Vujicic, M., Bozovic, I. B. & Herbut, F. (1977). Construction of the
symmetry groups of polymer molecules. J. Phys. A, 10, 1271–1279.

Weber, L. (1929). Die Symmetrie homogener ebener Punktsysteme. Z.
Kristallogr. 70, 309–327.

Wilson, A. J. C. (2004). Arithmetic crystal classes and symmorphic space
groups. In International Tables for Crystallography, Vol. C, Mathema-
tical, Physical and Chemical Tables, edited by E. Prince, ch. 1.4.
Dordrecht: Kluwer Academic Publishers.

Wood, E. (1964a). The 80 diperiodic groups in three dimensions. Bell Syst.
Tech. J. 43, 541–559.

Wood, E. (1964b). The 80 diperiodic groups in three dimensions. Bell
Telephone Technical Publications, Monograph 4680.

Woods, H. J. (1935a). The geometrical basis of pattern design. Part I. Point
and line symmetry in simple figures and borders. J. Text. Inst. 26, T197–
T210.

Woods, H. J. (1935b). The geometrical basis of pattern design. Part II. Nets
and sateens. J. Text. Inst. 26, T293–T308.

Woods, H. J. (1935c). The geometrical basis of pattern design.
Part III. Geometrical symmetry in plane patterns. J. Text. Inst. 26,
T341–T357.

Woods, H. J. (1936). The geometrical basis of pattern design. Part IV.
Counterchange symmetry of plane patterns. J. Text. Inst. 27, T305–
T320.

Zak, J., Casher, A., Glück, M. & Gur, Y. (1969). The Irreducible
Representations of Space Groups. New York: W. A. Benjamin.

29 references

http://it.iucr.org/Eb/ch1o2v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


