p11a m Monoclinic/Oblique
No. 5 p11a Patterson symmetry p112/m
CELL CHOICE 1

symmetry group diagram

Origin on glide plane a

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z

Symmetry operations

(1)  1
      (1 | 0, 0, 0)
(2)  a   xy, 0
      (mz | 1/2, 0, 0)
   

Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

  General:
2 a 1
(1) xyz (2) x + 1/2y-z
hk: h = 2n
h0: h = 2n

Symmetry of special projections

Along [001]   p1
a' = 1/2a   b' = b   
Origin at 0, 0, z
Along [100]   [script p]11m
a' = bp   
Origin at x, 0, 0
Along [010]   [script p]11g
a' = ap   
Origin at 0, y, 0

Maximal non-isotypic subgroups


I [2] p1 (1) 1
IIa none
IIb none

Maximal isotypic subgroups of lowest index


IIc [2] p11a (b' = 2b or a' = a + 2bb' = 2b) (5)

Minimal non-isotypic supergroups


I [2] p112/a (7); [2] pm21b (28); [2] pb2b (30); [2] pm2a (31); [2] pm21n (32); [2] pb21a (33); [2] pb2n (34); [2] cm2e (36)
II [2] p11m (a' = 1/2a) (4)

DIFFERENT CELL CHOICES

symmetry group diagram

p11a

CELL CHOICE 1

symmetry group diagram

Origin on glide plane a

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

  General:
2 a 1
(1) xyz (2) x + 1/2y-z
hk: h = 2n
h0: h = 2n

p11n

CELL CHOICE 2

symmetry group diagram

Origin on glide plane n

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

  General:
2 a 1
(1) xyz (2) x + 1/2y + 1/2-z
hk: h + k = 2n
h0: h = 2n
0k: k = 2n

p11b

CELL CHOICE 3

symmetry group diagram

Origin on glide plane b

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

  General:
2 a 1
(1) xyz (2) xy + 1/2-z
hk: k = 2n
0k: k = 2n








































to end of page
to top of page