c211 2 Monoclinic/Rectangular
No. 10 c211 Patterson symmetry c2/m11

symmetry group diagram

Origin on 2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2

Symmetry operations

For (0, 0, 0)+ set

(1)  1
      (1 | 0, 0, 0)
(2)  2   x, 0, 0
      (2x | 0, 0, 0)

For (1/21/2, 0)+ set

(1)  t (1/21/2, 0)  
      (1 | 1/21/2, 0)
(2)  2 (1/2, 0, 0)   x1/4, 0
      (2x | 1/21/2, 0)

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(1/21/2, 0); (2)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

  (0, 0, 0)+  (1/21/2, 0)+   General:
4 b 1
(1) xyz (2) x-y-z    
hk: h + k = 2n
h0: h = 2n
0k: k = 2n
    Special: no extra conditions
2 a  2 
x, 0, 0  

Symmetry of special projections

Along [001]   c1m1
a' = bp   b' = -a   
Origin at 0, 0, z
Along [100]   [script p]211
a' = 1/2b   
Origin at x, 0, 0
Along [010]   [script p]11m
a' = 1/2a   
Origin at 0, y, 0

Maximal non-isotypic subgroups


I [2] c1 (p1, 1) 1+
IIa [2] p2111 (9) 1; 2 + (1/21/2, 0)
  [2] p211 (8) 1; 2
IIb none

Maximal isotypic subgroups of lowest index


IIc [3] c211 (a' = 3a) (10)

Minimal non-isotypic supergroups


I [2] c2/m11 (18); [2] c222 (22); [2] cm2m (35); [2] cm2e (36); [3] p312 (67); [3] p321 (68)
II [2] p211 (a' = 1/2ab' = 1/2b) (8)








































to end of page
to top of page