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Preface

By V. Kopský and D. B. Litvin

This volume is divided into two sections. The first, covered in

Parts 1–4, can be considered as an extension of Volume A: Space-

Group Symmetry, in this series of International Tables for

Crystallography. As Volume A treats one-, two-, and three-

dimensional space groups, this Volume treats the two- and

three-dimensional subperiodic groups. That is, it treats the frieze

groups, two-dimensional groups with one-dimensional transla-

tions, the rod groups, three-dimensional groups with one-

dimensional translations, and layer groups, three-dimensional

groups with two-dimensional translations. A reader familiar with

Volume A should readily recognize the format and content of the

tables of Parts 1–4 of this volume. The information presented for

the subperiodic groups is in the same format and consists of the

same content as that provided in Volume A for space groups.

A relationship between space and subperiodic groups is

considered in Parts 5 and 6: given a crystal of a specific space-

group symmetry and a plane transecting the crystal, one can

enquire as to what is the layer subgroup of the space group which

leaves this plane invariant. The physical motivation for answering

this question is discussed in Chapter 5.2. This is followed by the

‘Scanning Tables’ in which the layer symmetries of ‘sectional’

planes are tabulated for all crystallographic orientations and for

all positions (locations) of these planes. These tables also contain

explicitly the orbits of these planes and implicitly, via the so-

called ‘scanning groups’, information about the rod symmetries

of straight lines which penetrate through the crystal.

A new feature of this second edition is the addition of Seitz

notation. In the symmetry-operations section of each table in Parts

2–4 the Seitz notation for each symmetry operation is given below

its geometric notation. Minor additions to the text and tables, and

corrections of a few typographical errors, have been made.

The history of this work dates back to 1972 when one of us

(DBL) was asked by a fellow post doc, John Berlinsky, if there

existed International-like tables to classify arrays of hydrogen

molecules on a surface with the molecules not constrained to be

‘in-plane’. Tables for the layer groups were subsequently derived

in the content and format of the International Tables for X-ray

Crystallography, Volume 1 (1952). It was later pointed out by a

referee of Acta Crystallographica that such tables had already

been published by E. Wood in 1964. Work on these tables

remained dormant until 1983 with the publication of Volume A

of International Tables for Crystallography, and the extensive

addition of new features in the description of each space group.

Work began then on including these new features into tables for

the layer groups.

During this same time one of us (VK) was asked by Dr V.

Janovec to investigate the group-theoretical aspects of the

analysis of domain walls and twin boundaries. Thus, work began

on the relationships between space groups and subperiodic

groups and standards for the subperiodic groups.

It is our subsequent collaboration which has led to the

material presented in this volume. In the many decisions

concerning the choice of symbols, origins and settings for the

subperiodic groups, the final choices were made based on

relationships between space groups and subperiodic groups.

While these relationships are not all explicitly given here, they

have been implicitly used.

As with any major work such as this, there are those to whom

we must give our thanks: Dr E. Woods is thanked for her

encouragement during the initial stage of this work. Dr Th. Hahn

has provided advice, comments and encouragement dating back

to 1983. Constructive feedback on reading parts of this work were

received from Drs Th. Hahn, H. Wondratschek and V. Janovec.

The drawings in Parts 1–4 of this volume were done by Steven

Erb, a Mechanical Engineering Technology student at the Berks

Campus of the Pennsylvania State University. The drawings in

Parts 5 and 6 were done by V. Kopský Jr, a biology student at

Charles University. We also thank M. I. Aroyo, P. Konstantinov,

E. Kroumova and M. Gateshki for converting the computer files

of Parts 2, 3 and 4 from WordPerfect to LATEX format.

The financial support received from various organizations

during which work was performed leading to and for this

volume from a National Academy of Science–Czechoslovak

Academy of Science Exchange Program (1984), the United

States National Science Foundation (INT-8922251), the Inter-

national Union of Crystallography and the Pennsylvania State

University is gratefully acknowledged by us. In addition, for their

major additional support DBL thanks the United States National

Science Foundation (DMR-8406196, DMR-9100418, DMR-

9305825 and DMR-9510335) and VK the University of the South

Pacific (Fiji) (Research Committee Grant 070-91111), under

which a major portion of this work was completed in an idyllic

setting, and the Grant Agency of the Czech Republic (GA CR

202/96/1614).

As to the dedication, we would like to point out, to quell any

rumours to the contrary, that Mary and Tikva ( Þ

are our respective wives. Their unending patience and constant

encouragement are indeed due recognition. The parenthetical

Hebrew means ‘may her memory be blessed’, and Professor W.

Opechowski is included as DBL’s scientific ‘father’.
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1.2. Guide to the use of the subperiodic group tables

By V. Kopský and D. B. Litvin*

This present volume is, in part, an extension of International

Tables for Crystallography, Volume A, Space-Group Symmetry

(IT A, 2005). Symmetry tables are given in IT A for the 230

three-dimensional crystallographic space-group types (space

groups) and the 17 two-dimensional crystallographic space-group

types (plane groups). We give in the following three parts of this

volume analogous symmetry tables for the two-dimensional and

three-dimensional subperiodic group types: the seven crystal-

lographic frieze-group types (two-dimensional groups with one-

dimensional translations) in Part 2; the 75 crystallographic rod-

group types (three-dimensional groups with one-dimensional

translations) in Part 3; and the 80 crystallographic layer-group

types (three-dimensional groups with two-dimensional transla-

tions) in Part 4. This chapter forms a guide to the entries of the

subperiodic group tables given in Parts 2–4.

1.2.1. Classification of subperiodic groups

Subperiodic groups can be classified in ways analogous to the

space groups. For the mathematical definitions of these classifi-

cations and their use for space groups, see Chapter 8.2 of IT A

(2005). Here we shall limit ourselves to those classifications which

are explicitly used in the symmetry tables of the subperiodic

groups.

1.2.1.1. Subperiodic group types

The subperiodic groups are classified into affine subperiodic

group types, i.e. affine equivalence classes of subperiodic groups.

There are 80 affine layer-group types and seven affine frieze-

group types. There are 67 crystallographic and an infinity of

noncrystallographic (Opechowski, 1986) affine rod-group types.

We shall consider here only rod groups of the 67 crystallographic

rod-group types. We shall refer here to these crystallographic

affine rod-group types simply as affine rod-group types and to the

crystallographic rod groups belonging to these types simply as

rod groups.

The subperiodic groups are also classified into proper affine

subperiodic group types, i.e. proper affine classes of subperiodic

groups. For layer and frieze groups, the two classifications are

identical. For rod groups, each of eight affine rod-group types

splits into a pair of enantiomorphic crystallographic rod-group

types. Consequently, there are 75 proper affine rod-group types.

The eight pairs of enantiomorphic rod-group types are p41 (R24),

p43 (R26); p4122 (R31), p4322 (R33); p31 (R43), p32 (R44); p3112

(R47), p3212 (R48); p61 (R54), p65 (R58); p62 (R55), p64 (R57);

p6122 (R63), p6522 (R67); and p6222 (R64), p6422 (R66). (Each

subperiodic group is given in the text by its Hermann–Mauguin

symbol followed in parenthesis by a letter L, R or F to denote it,

respectively, as a layer, rod or frieze group, and its sequential

numbering from Parts 2, 3 or 4.) We shall refer to the proper

affine subperiodic group types simply as subperiodic group types.

1.2.1.2. Other classifications

There are 27 geometric crystal classes of layer groups and rod

groups, and four geometric crystal classes of frieze groups. These

are listed, for layer groups, in the fourth column of Table 1.2.1.1,

and for the rod and frieze groups in the second columns of Tables

1.2.1.2 and 1.2.1.3, respectively.

We further classify subperiodic groups according to the

following classifications of the subperiodic group’s point group

and lattice group. These classifications are introduced to

emphasize the relationships between subperiodic groups and

space groups:

(1) The point group of a layer or rod group is three-

dimensional and corresponds to a point group of a three-

dimensional space group. The point groups of three-dimensional

space groups are classified into the triclinic, monoclinic, ortho-

rhombic, tetragonal, trigonal, hexagonal and cubic crystal

systems. We shall use this classification also for subperiodic

groups. Consequently, the three-dimensional subperiodic groups

are classified, see the third column of Table 1.2.1.1 and the first

column of Table 1.2.1.2, into the triclinic, monoclinic, ortho-

rhombic, tetragonal, trigonal and hexagonal crystal systems. The

cubic crystal system does not arise for three-dimensional

subperiodic groups. Two-dimensional subperiodic groups, i.e.

frieze groups, are analogously classified, see the first column of

Table 1.2.1.3, into the oblique and rectangular crystal systems.

(2) The two-dimensional lattice of a layer group is also a two-

dimensional lattice of a plane group. The lattices of plane groups

are classified, according to Bravais (flock) systems, see IT A

(2005), into the oblique, rectangular, square and hexagonal

Bravais systems. We shall also use this classification for layer

groups, see the first column in Table 1.2.1.1. For rod and frieze

groups no lattice classification is used, as all one-dimensional

lattices form a single Bravais system.

A subdivision of the monoclinic rod-group category is made

into monoclinic/inclined and monoclinic/orthogonal. Two

different coordinate systems, see Table 1.2.1.2, are used for the

rod groups of these two subdivisions of the monoclinic crystal

system. These two coordinate systems differ in the orientation of

the plane containing the non-lattice basis vectors relative to the

lattice vectors. For the monoclinic/inclined subdivision, the plane

containing the non-lattice basis vectors is, see Fig. 1.2.1.1, inclined

with respect to the lattice basis vector. For the monoclinic/

orthogonal subdivision, the plane is, see Fig. 1.2.1.2, orthogonal.

1.2.1.2.1. Conventional coordinate systems

The subperiodic groups are described by means of a crystal-

lographic coordinate system consisting of a crystallographic

origin, denoted by O, and a crystallographic basis. The basis

vectors for the three-dimensional layer groups and rod groups

are labelled a, b and c. The basis vectors for the two-dimensional

frieze groups are labelled a and b. Unlike space groups, not all

basis vectors of the crystallographic basis are lattice vectors. Like

space groups, the crystallographic coordinate system is used to

define the symmetry operations (see Section 1.2.9) and the

Wyckoff positions (see Section 1.2.11). The symmetry operations

are defined with respect to the directions of both lattice and non-

lattice basis vectors. A Wyckoff position, denoted by a coordinate

triplet (x, y, z) for the three-dimensional layer and rod groups, is

5



p2mg 2mm Rectangular

No. 7 p2mg Patterson symmetry p2mm

Origin at 21g

Asymmetric unit 0 ≤ x ≤ 1
4

Symmetry operations

(1)
(1|0,0)
1 (2)

(2|0,0)
2 0,0 (3)

(mx| 1
2 ,0)

m 1
4 ,y (4)

(my| 1
2 ,0)

g x,0

Generators selected (1); t(1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 c 1 (1) x,y (2) x̄, ȳ (3) x̄+ 1
2 ,y (4) x+ 1

2 , ȳ h : h = 2n

Special: no extra conditions

2 b . m . 1
4 ,y

3
4 , ȳ

2 a 2 . . 0,0 1
2 ,0

Symmetry of special projections
Along [10] m

Origin at x,0

Along [01] pm
a′ = 1

2 a
Origin at 0,y

Maximal non-isotypic subgroups
I [2] p11g (5) 1; 4

[2] p1m1 (3) 1; 3
[2] p211 (2) 1; 2

IIa none

IIb none

Maximal isotypic subgroups of lowest index
IIc [3] p2mg (a′ = 3a) (7)

Minimal non-isotypic supergroups
I none

II [2] p2mm (a′ = 1
2 a) (6)
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p4/mcc 4/mmm Tetragonal

No. 40 p4/m2/c2/c Patterson symmetry p4/mmm

Origin at centre (4/m) at 4/mcc

Asymmetric unit 0 ≤ x; 0 ≤ y; 0 ≤ z ≤ 1
4

Symmetry operations

(1)
(1|0,0,0)
1 (2)

(2z|0,0,0)
2 0,0,z (3)

(4z|0,0,0)
4+ 0,0,z (4)

(4−1
z |0,0,0)

4− 0,0,z

(5)
(2y|0,0, 1

2 )
2 0,y, 1

4 (6)
(2x|0,0, 1

2 )
2 x,0, 1

4 (7)
(2xy|0,0, 1

2 )
2 x,x, 1

4 (8)
(2x̄y|0,0, 1

2 )
2 x, x̄, 1

4

(9)
(1̄|0,0,0)
1̄ 0,0,0 (10)

(mz|0,0,0)
m x,y,0 (11)

(4̄z|0,0,0)
4̄+ 0,0,z; 0,0,0 (12)

(4̄−1
z |0,0,0)

4̄− 0,0,z; 0,0,0

(13)
(my|0,0, 1

2 )
c x,0,z (14)

(mx|0,0, 1
2 )

c 0,y,z (15)
(mxy|0,0, 1

2 )
c x, x̄,z (16)

(mx̄y|0,0, 1
2 )

c x,x,z
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CONTINUED No. 40 p4/mcc

Generators selected (1); t(0,0,1); (2); (3); (5); (9)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

16 g 1 (1) x,y,z (2) x̄, ȳ,z (3) ȳ,x,z (4) y, x̄,z
(5) x̄,y, z̄+ 1

2 (6) x, ȳ, z̄+ 1
2 (7) y,x, z̄+ 1

2 (8) ȳ, x̄, z̄+ 1
2

(9) x̄, ȳ, z̄ (10) x,y, z̄ (11) y, x̄, z̄ (12) ȳ,x, z̄
(13) x, ȳ,z+ 1

2 (14) x̄,y,z+ 1
2 (15) ȳ, x̄,z+ 1

2 (16) y,x,z+ 1
2

l : l = 2n

Special: no extra conditions

8 f m . . x,y,0 x̄, ȳ,0 ȳ,x,0 y, x̄,0
x̄,y, 1

2 x, ȳ, 1
2 y,x, 1

2 ȳ, x̄, 1
2

8 e . 2 . x,0, 1
4 x̄,0, 1

4 0,x, 1
4 0, x̄, 1

4

x̄,0, 3
4 x,0, 3

4 0, x̄, 3
4 0,x, 3

4

8 d . . 2 x,x, 1
4 x̄, x̄, 1

4 x̄,x, 1
4 x, x̄, 1

4

x̄, x̄, 3
4 x,x, 3

4 x, x̄, 3
4 x̄,x, 3

4

4 c 4 . . 0,0,z 0,0, z̄+ 1
2 0,0, z̄ 0,0,z+ 1

2

2 b 4/m . . 0,0,0 0,0, 1
2

2 a 4 2 2 0,0, 1
4 0,0, 3

4

Symmetry of special projections
Along [001] 4mm

Origin at 0,0,z

Along [100] p2mm
a′ = 1

2 c
Origin at x,0,0

Along [110] p2mm
a′ = 1

2 c
Origin at x,x,0

Maximal non-isotypic non-enantiomorphic subgroups
I [2] p 4̄2c (38) 1; 2; 5; 6; 11; 12; 15; 16

[2] p 4̄c2 (p 4̄2c, 38) 1; 2; 7; 8; 11; 12; 13; 14
[2] p4cc (36) 1; 2; 3; 4; 13; 14; 15; 16
[2] p422 (30) 1; 2; 3; 4; 5; 6; 7; 8
[2] p4/m11 (p4/m, 28) 1; 2; 3; 4; 9; 10; 11; 12
[2] p2/m2/c1 (pccm, 21) 1; 2; 5; 6; 9; 10; 13; 14
[2] p2/m12/c (pccm, 21) 1; 2; 7; 8; 9; 10; 15; 16

IIa none

IIb none

Maximal isotypic subgroups and enantiomorphic subgroups of lowest index
IIc [3] p4/mcc (c′ = 3c) (40)

Minimal non-isotypic non-enantiomorphic supergroups
I none
II [2] p4/mmm (c′ = 1

2 c) (39)
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p4/nmm 4/mmm Tetragonal/Square

No. 64 p4/n21/m2/m Patterson symmetry p4/mmm

ORIGIN CHOICE 1

Origin on 4mm at − 1
4 ,− 1

4 ,0 from centre (2/m)

Asymmetric unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

2 ; y ≤ 1
2 − x; 0 ≤ z

Symmetry operations

(1)
(1|0,0,0)
1 (2)

(2z|0,0,0)
2 0,0,z (3)

(4z|0,0,0)
4+ 0,0,z (4)

(4−1
z |0,0,0)

4− 0,0,z

(5)
(2y| 1

2 ,
1
2 ,0)

2( 1
2 ,

1
2 ,0) 0,y,0 (6)

(2x| 1
2 ,

1
2 ,0)

2( 1
2 ,

1
2 ,0) x,0,0 (7)

(2xy| 1
2 ,

1
2 ,0)

2( 1
2 ,

1
2 ,0) x,x,0 (8)

(2x̄y| 1
2 ,

1
2 ,0)

2( 1
2 ,

1
2 ,0) x, x̄,0

(9)
(1̄| 1

2 ,
1
2 ,0)

1̄ 1
4 ,

1
4 ,0 (10)

(mz| 1
2 ,

1
2 ,0)

n( 1
2 ,

1
2 ,0) x,y,0 (11)

(4̄z| 1
2 ,

1
2 ,0)

4̄+ 1
2 ,0,z; 1

2 ,0,0 (12)
(4̄−1

z | 1
2 ,

1
2 ,0)

4̄− 1
2 ,0,z; 1

2 ,0,0

(13)
(my|0,0,0)
m x,0,z (14)

(mx|0,0,0)
m 0,y,z (15)

(mxy|0,0,0)
m x, x̄,z (16)

(mx̄y|0,0,0)
m x,x,z

356



CONTINUED No. 64 p4/nmm

Generators selected (1); t(1,0,0); t(0,1,0); (2); (3); (5); (9)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

16 h 1 (1) x,y,z (2) x̄, ȳ,z (3) ȳ,x,z (4) y, x̄,z
(5) x̄+ 1

2 ,y+ 1
2 , z̄ (6) x+ 1

2 , ȳ+ 1
2 , z̄ (7) y+ 1

2 ,x+ 1
2 , z̄ (8) ȳ+ 1

2 , x̄+ 1
2 , z̄

(9) x̄+ 1
2 , ȳ+ 1

2 , z̄ (10) x+ 1
2 ,y+ 1

2 , z̄ (11) y+ 1
2 , x̄+ 1

2 , z̄ (12) ȳ+ 1
2 ,x+ 1

2 , z̄
(13) x, ȳ,z (14) x̄,y,z (15) ȳ, x̄,z (16) y,x,z

hk : h+ k = 2n
0k : k = 2n
h0 : h = 2n

Special: as above, plus

8 g . . m x,x,z x̄, x̄,z x̄,x,z x, x̄,z
x̄+ 1

2 ,x+ 1
2 , z̄ x+ 1

2 , x̄+ 1
2 , z̄ x+ 1

2 ,x+ 1
2 , z̄ x̄+ 1

2 , x̄+ 1
2 , z̄

no extra conditions

8 f . m . 0,y,z 0, ȳ,z ȳ,0,z y,0,z
1
2 ,y+ 1

2 , z̄
1
2 , ȳ+ 1

2 , z̄ y+ 1
2 ,

1
2 , z̄ ȳ+ 1

2 ,
1
2 , z̄

no extra conditions

8 e . . 2 x,x+ 1
2 ,0 x̄, x̄+ 1

2 ,0 x̄+ 1
2 ,x,0 x+ 1

2 , x̄,0
x̄+ 1

2 , x̄,0 x+ 1
2 ,x,0 x, x̄+ 1

2 ,0 x̄,x+ 1
2 ,0

no extra conditions

4 d 2 mm . 1
2 ,0,z 0, 1

2 ,z 0, 1
2 , z̄

1
2 ,0, z̄ no extra conditions

4 c . . 2/m 1
4 ,

1
4 ,0

3
4 ,

3
4 ,0

3
4 ,

1
4 ,0

1
4 ,

3
4 ,0 hk : h,k = 2n

2 b 4 m m 0,0,z 1
2 ,

1
2 , z̄ no extra conditions

2 a 4̄ m 2 1
2 ,0,0 0, 1

2 ,0 no extra conditions

Symmetry of special projections
Along [001] p4mm
a′ = 1

2 (a−b) b′ = 1
2 (a+b)

Origin at 0,0,z

Along [100] p2mg
a′ = b
Origin at x, 1

4 ,0

Along [110] p2mm
a′ = 1

2 (−a+b)
Origin at x,x,0

Maximal non-isotypic subgroups
I [2] p 4̄m2 (59) 1; 2; 7; 8; 11; 12; 13; 14

[2] p 4̄21 m (58) 1; 2; 5; 6; 11; 12; 15; 16
[2] p4mm (55) 1; 2; 3; 4; 13; 14; 15; 16
[2] p421 2 (54) 1; 2; 3; 4; 5; 6; 7; 8
[2] p4/n11 (p4/n, 52) 1; 2; 3; 4; 9; 10; 11; 12
[2] p2/n12/m (cmme, 48) 1; 2; 7; 8; 9; 10; 15; 16
[2] p2/n21/m1 (pmmn, 46) 1; 2; 5; 6; 9; 10; 13; 14

IIa none

IIb none

Maximal isotypic subgroups of lowest index
IIc [9] p4/nmm (a′ = 3a,b′ = 3b) (64)

Minimal non-isotypic supergroups
I none
II [2] c4/mmm (p4/mmm, 61)
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5.2. Guide to the use of the scanning tables

By V. Kopský* and D. B. Litvin

5.2.1. Introduction

The global symmetry of an ideal crystal is described by its space

group G. It is also of interest to consider symmetries of local

character. The classical example is that of the site symmetries,

which are the symmetries of individual points in a crystal. These

are completely described and classified as a part of the standard

description of space groups in International Tables for Crystal-

lography, Volume A, Space-Group Symmetry (IT A, 2005). The

results of this procedure contain two types of information:

(i) site symmetries of individual points under the action of the

group G and

(ii) orbits of points under the action of the group G.

This information, apart from its use, for example, in the

consideration of the splitting of atomic levels in the field of the

site symmetry, provides the background for the description of

crystal structure: points of the same orbit are occupied by iden-

tical atoms (ions) and the environment of these atoms (ions) is

also identical. A complete description of the structure is reduced

to a description of the occupation of individual Wyckoff posi-

tions.

Analogously, we may consider the symmetries of planes

transecting the crystal and of straight lines penetrating the

crystal, called here the sectional layer groups (symmetries) and

the penetration rod groups (symmetries). Here we look again for

the two types of information:

(i) symmetries of individual planes (straight lines) under the

action of the group G and

(ii) orbits of planes (straight lines) under the action of the

group G.

The general law that describes the connection between local

symmetries and orbits of points, planes or straight lines is

expressed by a coset resolution of the space group with respect to

local symmetries. The orbits of planes (straight lines) have

analogous properties to orbits of points. The structure of the

plane (straight line) and its environment is identical for different

planes (straight lines) of the same orbit. This is useful in the

consideration of layer structures, see Section 5.2.5.1, and of

structures with pronounced rod arrangements.

Layer symmetries have also been found to be indispensable in

bicrystallography, see Section 5.2.5.2. This term and the term

bicrystal were introduced by Pond & Bollmann (1979) with

reference to the study of grain boundaries [see also Pond &

Vlachavas (1983) and Vlachavas (1985)]. A bicrystal is in general

an edifice where two crystals, usually of the same structure but of

different orientations, meet at a common boundary – an inter-

face. The sectional layer groups are appropriate for both the

description of symmetries of such boundary planes and the

description of the bicrystals.

The sectional layer groups were, however, introduced much

earlier by Holser (1958a,b) in connection with the consideration

of domain walls and twin boundaries as symmetry groups of

planes bisecting the crystal. The mutual orientations of the two

components of a bicrystal are in general arbitrary. In the case of

domain walls and twin boundaries, which can be considered as

interfaces of special types of bicrystals, there are crystallographic

restrictions on these orientations. The group-theoretical basis for

an analysis of domain pairs is given by Janovec (1972). The

consideration of the structure of domain walls or twin boundaries

involves the sectional layer groups (Janovec, 1981; Zikmund,

1984); they were examined in the particular cases of domain

structure in KSCN crystals (Janovec et al., 1989) and of domain

walls and antiphase boundaries in calomel crystals (Janovec &

Zikmund, 1993), see Section 5.2.5.3, and recently also in fullerene

C60 (Janovec & Kopský, 1997; Saint-Grégoire et al., 1997).

The first attempts to derive the sectional layer groups

systematically were made by Wondratschek (1971) and by using a

computer program written by Guigas (1971). Davies & Dirl

(1993a) developed a program for finding subgroups of space

groups, which they later modified to find sectional layer groups

and penetration rod groups as well (Davies & Dirl, 1993b). The

use and determination of sectional layer groups have also been

discussed by Janovec et al. (1988), Kopský & Litvin (1989) and

Fuksa et al. (1993).

The penetration rod groups can be used in the consideration of

linear edifices in a crystal, e.g. line dislocations or intersections of

boundaries, or in crystals with pronounced rod arrangements. So

far, there seems to be no interest in the penetration rod groups

and there is actually no need to produce special tables for these

groups. Determining penetration rod groups was found to be a

complementary problem to that of determining sectional layer

groups (Kopský, 1989c, 1990).

The keyword for this part of this volume is the term scanning,

introduced by Kopský (1990) for the description of the spatial

distribution of local symmetries. In this sense, the description of

site symmetries and classification of point orbits by Wyckoff

positions are a result of the scanning of the space group for the

site symmetries.

The Scanning tables, Part 6, give a complete set of information

on the space distribution of sectional layer groups and of the

penetration rod groups. They were derived using the scanning-

group method and the scanning theorem, see Section 5.2.2.2. The

tables describe explicitly the scanning for the sectional layer

groups. The spatial distribution of (scanning for) the penetration

rod groups is seen directly from the scanning groups, which are

given as a part of the information in the scanning tables.

The sectional layer groups and the penetration rod groups are

subgroups of space groups and as such act on the three-

dimensional point space. The examples of particular studies in

Section 5.2.5 emphasize the importance of the exact location of

sectional layer groups with reference to the crystal structure and

hence to the crystallographic coordinate system. In the usual

interpretation, Hermann–Mauguin symbols do not specify the

location of the group in space. In the scanning tables, each

Hermann–Mauguin symbol means a quite specific space or layer

group with reference to a specified crystallographic coordinate

system, see Sections 5.2.3.1.1 and 5.2.3.1.4.

The layer and rod groups can also be interpreted as factor

groups of reducible space groups (Kopský, 1986, 1988, 1989a,b,

1993a; Fuksa & Kopský, 1993). Our choice of standard Hermann–
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5. SCANNING OF SPACE GROUPS

For the special values h ¼ 1, l ¼ 0, this orbit turns into an orbit

ð110Þ with fixed parameters and an orthorhombic scanning group.

5.2.5. Applications

5.2.5.1. Layer symmetries in crystal structures

The following two examples show the use of layer symmetries

in the description of crystal structures.

Example 1

Fig. 5.2.5.1 shows the crystal structure of cadmium iodide, CdI2.

The space group of this crystal is P�3m1, D3
3d (No. 164). The

anions form a hexagonal close packing of spheres and the

cations occupy half of the octahedral holes, filling one of the

alternate layers. In close-packing notation, the CdI2 structure

is:

A C B C

I Cd I void

From the scanning tables, we obtain for planes with the (0001)

orientation and at heights 0c or 1
2 c a sectional layer symmetry

p�3m1 (L72), and for planes of this orientation at any other

height a sectional layer symmetry p3m1 (L69).

The plane at height 0c contains cadmium ions. This plane

defines the orbit of planes of orientation (0001) located at

points Pþ nc, where n 2 Z (Z is the set of all integers). All

these planes contain cadmium ions in the same arrangement (C

layer filled with Cd).

The plane at height 1
2 c defines the orbit of planes of orientation

(0001) located at points Pþ ðnþ 1
2Þc, where n 2 Z. All these

planes lie midway between A and B layers of iodine ions with

the B layer below, the A layer above the plane. They contain

only voids.

The planes at levels 1
4 c and 3

4 c contain B and A layers of iodine

ions, respectively. These planes and all planes produced by

translations nc from them belong to the same orbit because the

operations �3 exchange the A and B layers.

Example 2

The space group of cadmium chloride, CdCl2, is R�3m, D5
3d (No.

166). Fig. 5.2.5.2 shows the structure of CdCl2 in its triple

hexagonal cell. The anions form a cubic close packing of

spheres and the cations occupy half of the octahedral holes of

each alternate layer. In close-packing notation, the CdCl2
structure is:

A C B A C B A C B A C B

Cl Cd Cl void Cl Cd Cl void Cl Cd Cl void

We choose the origin at a cadmium ion and the hexagonal basis

vectors a, b as shown in Fig. 5.2.5.2. This corresponds to the

obverse setting for which the scanning table is given in Part 6.

The planes with the (0001) orientation at the heights 0c, 1
6 c, 1

3 c,
1
2 c, 2

3 c and 5
6 c have a sectional layer group of the type p�3m1

(L72) and at any other height have a sectional layer group of

the type p3m1 (L69).

The scanning table also specifies the location of the sectional

layer groups. The position along the c axis, where the basis

vector c ¼ d specifies the scanning direction, is given by frac-

tions of d or by sd in the case of a general position. At the

heights 0c and 1
2 c, the sectional layer group is the group p�3m1

(L72), while at the heights 1
3 c and 5

6 c it is the group p�3m1

½ðaþ 2bÞ=3� (L72), and at the heights 2
3 c and 1

6 c it is the group

p�3m1 ½ð2aþ bÞ=3�, (L72), where the vectors in brackets mean

the shift of the group p�3m1 in space. The planes at the heights

0d, 1
3 d and 2

3 d belong to one translation orbit and the layers

contain cadmium ions which are shifted relative to each other

by the vectors ðaþ 2bÞ=3 and ð2aþ bÞ=3. The planes at the

heights 1
2 d, 5

6 d and 1
6 d contain the voids and are located midway

between layers of chlorine ions; they belong to another linear

orbit and again are shifted relative to each other by the vectors

ðaþ 2bÞ=3 and ð2aþ bÞ=3.

5.2.5.2. Interfaces in crystalline materials

The scanning for the sectional layer groups is a procedure

which finds applications in the theory of bicrystals and their

interfaces. The first of these two terms was introduced in the study

of grain boundaries (Pond & Bollmann, 1979; Pond & Vlachavas,

1983; Vlachavas, 1985; Kalonji, 1985). An ideal bicrystal is

understood to be an aggregate of two semi-infinite crystals of

identical structure, meeting at a common planar boundary called

the interface, where one of the structures, occupying half-space on

one side of the interface, is misoriented and/or displaced relative

to the other structure occupying the other half-space. The word

interface is a synonym for a boundary and interfaces considered

here are homophase interfaces, in contrast with heterophase

interfaces, where the two structures are different (Sutton &

Balluffi, 1995).

An independent study of domain and twin boundaries

(Janovec, 1981; Zikmund, 1984) resulted in a terminology parallel

to that of the bicrystallography. The basic concept here is the

domain twin, which is technically a particular case of a bicrystal.

In this section, we use the terminology of bicrystals, giving the

terminology of domain twins, used in the next section, paren-

thetically.
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Fig. 5.2.5.1. The structure of cadmium iodide, CdI2. The section planes of two
orbits in special positions are distinguished by shading. The figure is
drastically elongated in the c direction to exhibit the layer symmetries.



Laue class C2h – 2/m 6. SCANNING TABLES Monoclinic

No. 13 P2/c C4
2hG = P12/c1 UNIQUE AXIS b

CELL CHOICE 1
G = P112/a UNIQUE AXIS c

Orientation Conventional basis Scanning Linear Sectional
orbit of the scanning group group orbit layer group
(hkl) a′ b′ d H sd L(sd)

UNIQUE AXIS b
(010) c a b P112/a 0d, 1

2
d p112/a L07

UNIQUE AXIS c [sd, −sd] p112 (a/4) L03
(001) a b c

UNIQUE AXIS b
(n0m) b nc − ma pc + qa

UNIQUE AXIS c
(mn0) c na − mb pa + qb

n odd m even P2/b11 0d, 1
2
d p2/b11 L16

q odd [sd, −sd] pb11 L12
m odd P2/n11 [0d, 1

2
d] p1 L02

q odd [ 1
4
d, 3

4
d] p211 (b′/4) L08

[±sd, (±s + 1
2
)d] p1 L01

m odd P2/c11 [0d, 1
2
d] p1 L02

p odd q even [ 1
4
d, 3

4
d] p211 L08

[±sd, (±s + 1
2
)d] p1 L01

No. 13 P2/c C4
2hG = P12/n1 UNIQUE AXIS b

CELL CHOICE 2
G = P112/n UNIQUE AXIS c

Orientation Conventional basis Scanning Linear Sectional
orbit of the scanning group group orbit layer group
(hkl) a′ b′ d H sd L(sd)

UNIQUE AXIS b
(010) c a b P112/n 0d, 1

2
d p112/n L07

UNIQUE AXIS c [sd, −sd] p112 [(a + b)/4] L03
(001) a b c

UNIQUE AXIS b
(n0m) b nc − ma pc + qa

UNIQUE AXIS c
(mn0) c na − mb pa + qb

n odd m even P2/n11 [0d, 1
2
d] p1 L02

p even q odd [ 1
4
d, 3

4
d] p211 (b′/4) L08

or [±sd, (±s + 1
2
)d] p1 L01

n even m odd
p odd q even
p odd q odd P2/c11 [0d, 1

2
d] p1 L02

[ 1
4
d, 3

4
d] p211 L08

[±sd, (±s + 1
2
)d] p1 L01

n odd m odd P2/b11 0d, 1
2
d p2/b11 L16

[sd, −sd] pb11 L12
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Cubic 6. SCANNING TABLES Laue class Oh – m3m

No. 224 Pn3m O4
h

G = P42
n 3 2

m origin 2

Orientation Conventional basis Scanning Linear Sectional

orbit of the scanning group group orbit layer group

(hkl) a′ b′ d H sd L(sd)
(001) a b c P42/nnm [0d, 1

2
d] ĉmme L48

(100) b c a (origin 2) [ 1
4
d, 3

4
d] p42m [(a′ + b′)/4] L57

(010) c a b (a′/2 or b′/2) [±sd, (±s + 1
2
)d] ĉmm2 [(a′ + b′)/4] L26

(110) c a − b a + b Abmm [0d, 1
2
d] pbmb L38

(011) a b − c b + c [ 1
4
d, 3

4
d] pbmm (b′/4) L40

(101) b c − a c + a [±sd, (±s + 1
2
)d] pbm2 (b′/4) L24

(110) c a + b b − a Abmm [0d, 1
2
d] pbmm L40

(011) a b + c c − b [(b′ + d)/4] [ 1
4
d, 3

4
d] pbmb (b′/4) L38

(101) b c + a a − c [±sd, (±s + 1
2
)d] pbm2 L24

(111) a − b b − c τ With respect to origin at P

(111) b − a −b − c τ 3 With respect to origin at P + (a + b)/2

(111) a + b c − b τ 1 With respect to origin at P + (b + c)/2

(111) −a − b b + c τ 2 With respect to origin at P + (c + a)/2

R3m [0d, [ 1
2
d, p3m1 L72

1
3
d, ‖ 5

6
d, p3m1 [(2a′ + b′)/3] L72

2
3
d] 1

6
d] p3m1 [(a′ + 2b′)/3] L72

[±sd, (±s+ 1
3
)d, (±s+ 2

3
)d] p3m1 L69

No. 225 Fm3m O5
hG = F 4

n3 2
m

Orientation Conventional basis Scanning Linear Sectional

orbit of the scanning group group orbit layer group

(hkl) a′ b′ d H sd L(sd)
(001) (a − b)/2 (a + b)/2 c I4/mmm [0d, 1

2
d] p4/mmm L61

(100) (b − c)/2 (b + c)/2 a [ 1
4
d, 3

4
d] p4/nmm L64

(010) (c − a)/2 (c + a)/2 b [±sd, (±s + 1
2
)d] p4mm L55

(110) c (a − b)/2 (a + b)/2 Immm [0d, 1
2
d] pmmm L37

(110) c (a + b)/2 (b − a)/2 [ 1
4
d, 3

4
d] pmmn [(a′ + b′)/4] L46

(011) a (b − c)/2 (b + c)/2 [±sd, (±s + 1
2
)d] pmm2 L23

(011) a (b + c)/2 (c − b)/2

(101) b (c − a)/2 (c + a)/2

(101) b (c + a)/2 (a − c)/2

(111) (a − c)/2 (b − a)/2 τ R3m [0d, [ 1
2
d, p3m1 L72

(111) (−a− c)/2 (a − b)/2 τ 3
1
3
d, ‖ 5

6
d, p3m1 [(2a′ + b′)/3] L72

(111) (a + c)/2 (−a−b)/2 τ 1
2
3
d] 1

6
d] p3m1 [(a′ + 2b′)/3] L72

(111) (c − a)/2 (a + b)/2 τ 2 [±sd, (±s+ 1
3
)d, (±s+ 2

3
)d] p3m1 L69
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