Tables for
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 5.2, pp. 117-123   | 1 | 2 |

Chapter 5.2. Crystal-density measurements

E. M. Westbrooka*

aMolecular Biology Consortium, Argonne, Illinois 60439, USA
Correspondence e-mail:


Adair, G. S. & Adair, M. E. (1936). The densities of protein crystals and the hydration of proteins. Proc. R. Soc. London Ser. B, 120, 422–446.Google Scholar
Berman, H. (1939). A torsion microbalance for the determination of specific gravities of minerals. Am. Mineral. 24, 434–440.Google Scholar
Bernal, J. D. & Crowfoot, D. (1934). Use of the centrifuge in determining the density of small crystals. Nature (London), 134, 809–810.Google Scholar
Bode, W. & Schirmer, T. (1985). Determination of the protein content of crystals formed by Mastigocladus laminosus C-phycocyanin, Chroomonas spec. phycocyanin-645, and modified human fibrinogen using an improved Ficoll density gradient method. Biol. Chem. Hoppe–Seyler, 366, 287–295.Google Scholar
Cantor, C. R. & Schimmel, P. R. (1980). Biophysical chemistry. San Francisco: W. H. Freeman & Co.Google Scholar
Coleman, P. M. & Matthews, B. W. (1971). Symmetry, molecular weight, and crystallographic data for sweet potato β-amylase. J. Mol. Biol. 60, 163–168.Google Scholar
Cornick, G., Sigler, P. B. & Ginsberg, H. S. (1973). Characterization of crystals of type 5 adenovirus hexon. J. Mol. Biol. 73, 533–538.Google Scholar
Crick, F. (1957). X-ray diffraction of protein crystals. Methods Enzymol. 4, 127–146.Google Scholar
Edelstein, S. J. & Schachman, H. (1973). Measurement of partial specific volumes by sedimentation equilibrium in H2O − D2O solutions. Methods Enzymol. 27, 83–98.Google Scholar
Edsall, J. T. (1953). Solvation of proteins. In The proteins, edited by H. Neurath & K. Bailey, Vol. 1, part B, pp. 549–726. New York: Academic Press.Google Scholar
Graubner, H. (1986). Densitometer for absolute measurements of the temperature dependence of density, partial volumes, and thermal expansivity of solids and liquids. Rev. Sci. Instrum. 57, 2817–2826.Google Scholar
Hegerl, R. & Altbauer, A. (1982). The EM program system. Ultramicroscopy, 9, 109–116.Google Scholar
Kiefersauer, R., Stetefeld, J., Gomis-Rüth, F. X., Romão, M. J., Lottspeich, F. & Huber, R. (1996). Protein-crystal density by volume measurement and amino-acid analysis. J. Appl. Cryst. 29, 311–317.Google Scholar
Kratky, O., Leopold, H. & Stabinger, H. (1973). The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol. 27, 98–110.Google Scholar
Kuntz, I. D. & Kaufmann, W. (1974). Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239–345.Google Scholar
Low, B. W. & Richards, F. M. (1952a). The use of the gradient tube for the determination of crystal densities. J. Am. Chem. Soc. 74, 1660–1666.Google Scholar
Low, B. W. & Richards, F. M. (1952b). Determination of protein crystal densities. Nature (London), 170, 412–415.Google Scholar
Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491–497.Google Scholar
Matthews, B. W. (1974). Determination of molecular weight from protein crystals. J. Mol. Biol. 82, 513–526.Google Scholar
Matthews, B. W. (1977). Protein crystallography. In The proteins, edited by H. Neurath & R. L. Hill, 403–590. New York: Academic Press.Google Scholar
Matthews, B. W. (1985). Determination of protein molecular weight, hydration, and packing from crystal density. Methods Enzymol. 114, 176–187.Google Scholar
Midgley, H. G. (1951). A quick method of determining the density of liquid mixtures. Acta Cryst. 4, 565.Google Scholar
Perutz, M. F. (1946). The solvent content of protein crystals. Trans. Faraday Soc. 42B, 187–195.Google Scholar
Phillips, G. N., Lattman, E. E., Cummins, P., Lee, K. Y. & Cohen, C. (1979). Crystal structure and molecular interactions of tropomyosin. Nature (London), 278, 413–417.Google Scholar
Quiocho, F. A. & Richards, F. M. (1964). Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A. Proc. Natl Acad. Sci. USA, 52, 833–839.Google Scholar
Reilly, J. & Rae, W. N. (1954). Determination of the densities of solids by voluminometry. In Physico-chemical methods, Vol. 1, pp. 577–608. New York: van Nostrand.Google Scholar
Richards, F. M. (1954). A microbalance for the determination of protein crystal densities. Rev. Sci. Instrum. 24, 1029–1034.Google Scholar
Richards, F. M. & Lindley, P. F. (2004). Determination of the density of solids. In International tables for crystallography, Vol. C. Mathematical, physical and chemical tables, edited by E. Prince, ch. 3.2. Dordrecht: Kluwer Academic Publishers.Google Scholar
Russ, J. C. (1990). Computer-assisted microscopy: the measurement and analysis of images. New York: Plenum Press.Google Scholar
Scanlon, W. J. & Eisenberg, D. (1975). Solvation of crystalline proteins: theory and its application to available data. J. Mol. Biol. 98, 485–502.Google Scholar
Syromyatnikov, F. V. (1935). The micropycnometric method for the determination of specific gravities of minerals. Am. Mineral. 20, 364–370.Google Scholar
Tanford, C. (1961). Physical chemistry of macromolecules. New York: John Wiley & Sons.Google Scholar
Westbrook, E. M. (1976). Characterization of a hexagonal crystal form of an enzyme of steroid metabolism, D5–3-ketosteroid isomerase: a new method of crystal density measurement. J. Mol. Biol. 103, 659–664.Google Scholar
Westbrook, E. M. (1985). Crystal density measurements using aqueous Ficoll solutions. Methods Enzymol. 114, 187–196.Google Scholar