International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 6.2, pp. 133-142   | 1 | 2 |
https://doi.org/10.1107/97809553602060000666

Chapter 6.2. Neutron sources

B. P. Schoenborna* and R. Knottb

aLife Sciences Division M888, University of California, Los Alamos National Laboratory, Los Alamos, NM 8745, USA, and bSmall Angle Scattering Facility, Australian Nuclear Science & Technology Organisation, Physics Division, PMB 1 Menai NSW 2234, Australia
Correspondence e-mail:  schoenborn@lanl.gov

References

Ageron, P. (1989). Cold neutron sources at ILL. Nucl. Instrum. Methods A, 284, 197–199.Google Scholar
Akcasu, A. Z., Lellouche, G. S. & Shotkin, L. M. (1971). Mathematical methods in nuclear reactor dynamics. New York: Academic Press.Google Scholar
Alberi, J., Fischer, J., Radeka, V., Rogers, L. C. & Schoenborn, B. P. (1975). A two-dimensional position-sensitive detector for thermal neutrons. Nucl. Instrum. Methods, 127, 507–523.Google Scholar
Alsmiller, R. G. & Lillie, R. A. (1992). Design calculations for the ANS cold source. Part II. Heating rates. Nucl. Instrum. Methods A, 321, 265–270.Google Scholar
Bacon, G. E. (1962). Neutron diffraction. Oxford University Press.Google Scholar
Böni, P. (1997). Supermirror-based beam devices. Physica B, 234–236, 1038–1043.Google Scholar
Borkowski, C. J. & Kopp, M. K. (1975). Design and properties of position-sensitive proportional counters using resistance-capacitance position encoding. Rev. Sci. Instrum. 46, 951–962.Google Scholar
Carpenter, J. M. (1977). Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Methods, 145, 91–113.Google Scholar
Carpenter, J. M. & Yelon, W. B. (1986). Neutron sources. In Methods of experimental physics, Vol. 23A. New York: Academic Press.Google Scholar
Cipriani, F., Castagna, J.-C., Caustre, L., Wilkinson, C. & Lehmann, M. S. (1997). Large area neutron and X-ray image-plate detectors for macromolecular biology. Nucl. Instrum. Methods A, 392, 471–474.Google Scholar
Clark, C. D., Mitchell, E. W. J., Palmer, D. W. & Wilson, I. H. (1966). The design of a velocity selector for long wavelength neutrons. J. Sci. Instrum. 43, 1–5.Google Scholar
Convert, P. & Forsyth, J. B. (1983). Editors. Position-sensitive detection of thermal neutrons. London: Academic Press.Google Scholar
Copley, J. R. D. (1991). Acceptance diagram analysis of the performance of vertically curved neutron monochromators. Nucl. Instrum. Methods, 301, 191–201.Google Scholar
Copley, J. R. D. & Mildner, D. F. R. (1992). Simulation and analysis of the transmission properties of curved–straight neutron guide systems. Nucl. Sci. Eng. 110, 1–9.Google Scholar
Crawford, R. K. (1992). Position-sensitive detection of slow neutrons – survey of fundamental principles. SPIE, 1737, 210–223.Google Scholar
Ebisawa, T., Achiwa, N., Yamada, S., Akiyoshi, T. & Okamoto, S. (1979). Neutron reflectivities of Ni–Mn and Ni–Ti multilayers for monochromators and supermirrors. J. Nucl. Sci. Technol. 16, 647–659.Google Scholar
Freund, A. K. & Dolling, G. (1995). Devices for neutron beam definition. In International tables for crystallography, Vol. C. Mathematical, physical and chemical tables, edited by A. J. C. Wilson, pp. 375–382. Dordrecht: Kluwer Academic Publishers.Google Scholar
Glasstone, S. & Sesonske, A. (1994). Nuclear reactor engineering. New York: Chapman and Hall.Google Scholar
Hallsall, M. J. (1995). WIMS – a general purpose code for reactor core analysis. AEA Technology, Vienna.Google Scholar
Harris, P., Lebech, B. & Pedersen, J. S. (1995). The three-dimensional resolution function for small-angle scattering and Laue geometries. J. Appl. Cryst. 28, 209–222.Google Scholar
Hayter, J. B. & Mook, H. A. (1989). Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35–41.Google Scholar
Hjelm, R. (1996). Editor. Proceedings of the workshop on methods for neutron scattering instrumentation design. Lawrence Berkeley National Laboratory, USA.Google Scholar
Hughes, H. G. III (1988). Monte Carlo simulation of the LANSCE target geometry. Proceedings of the tenth international collaboration on advanced neutron sources, p. 455. New York: Institute of Physics.Google Scholar
Jacobé, J., Feltin, D., Rambaud, A., Ratel, F., Gamon, M. & Pernock, J. B. (1983). High pressure 3He multielectrode detectors for neutron localisation. In Position-sensitive detection of thermal neutrons, edited by P. Convert & J. B. Forsyth, pp. 106–119. London: Academic Press.Google Scholar
Jakeman, D. (1966). Physics of nuclear reactors. London: The English Universities Press.Google Scholar
Johnson, M. W. (1986). Editor. Workshop on neutron scattering data analysis. Rutherford Appleton Laboratory, Chilton, England. Bristol: Institute of Physics.Google Scholar
Johnson, M. W. & Stephanou, C. (1978). MCLIB: a library of Monte Carlo subroutines for neutron scattering problems. Report RL-78–090. Science Research Council, Chilton, England.Google Scholar
Knott, R. B., Smith, G. C., Watt, G. & Boldeman, J. B. (1997). A large 2D PSD for thermal neutron detection. Nucl. Instrum. Methods A, 392, 62–67.Google Scholar
Komura, S., Takeda, T., Fujii, H., Toyoshima, Y., Osamura, K., Mochiki, K. & Hasegawa, K. (1983). The 6-meter neutron small-angle scattering spectrometer at KUR. Jpn. J. Appl. Phys. 22, 351–356.Google Scholar
Kostorz, G. (1979). Neutron scattering. Treatise on materials science and technology, Vol. 15. New York: Academic Press.Google Scholar
Krueger, S., Koenig, B. W., Orts, W. J., Berk, N. F., Majkrzak, C. F. & Gawrisch, K. (1996). Neutron reflectivity studies of single lipid bilayers supported on planar substrates. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 205–213. New York: Plenum Press.Google Scholar
Lewis, E. E. & Miller, W. F. (1993). Computational methods of neutron transport. Washington: American Nuclear Society Inc.Google Scholar
Lillie, R. A. & Alsmiller, R. G. (1990). Design calculations for the ANS cold neutron source. Nucl. Instrum. Methods A, 295, 147–154.Google Scholar
Lowde, R. D. (1960). The principles of mechanical neutron-velocity selection. J. Nucl. Energy, 11, 69–80.Google Scholar
Mâaza, M., Farnoux, B., Samuel, F., Sella, C., Wehling, F., Bridou, F., Groos, M., Pardo, B. & Foulet, G. (1993). Reduction of the interfacial diffusion in Ni–Ti neutron-optics multilayers by carburation of the Ni–Ti interfaces. J. Appl. Cryst. 26, 574–582.Google Scholar
Magerl, A. & Wagner, V. (1994). Editors. Proceedings of the workshop on focusing Bragg optics. Nucl. Instrum. Methods A, Vol. 338.Google Scholar
Maier-Leibnitz, H. & Springer, T. (1963). The use of neutron optical devices on beam-hole experiments. J. Nucl. Energy, 17, 217–225.Google Scholar
Majkrzak, C. F. (1991). Polarised neutron reflectometry. Physica B, 173, 75–88.Google Scholar
Mikula, P., Krüger, E., Scherm, R. & Wagner, V. (1990). An elastically bent silicon crystal as a monochromator for thermal neutrons. J. Appl. Cryst. 23, 105–110.Google Scholar
Mildner, D. F. R. & Hammouda, B. (1992). The transmission of curved neutron guides with non-perfect reflectivity. J. Appl. Cryst. 25, 39–45.Google Scholar
Niimura, N., Karasawa, Y., Tanaka, I., Miyahara, J., Takahashi, K., Saito, H., Koizumi, S. & Hidaka, M. (1994). An imaging plate neutron detector. Nucl. Instrum. Methods A, 349, 521–525.Google Scholar
Niimura, N., Minezaki, Y., Nonaka, T., Castagna, J.-C., Cipriani, F., Høghøj, P., Lehmann, M. S. & Wilkinson, C. (1997). Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nature Struct. Biol. 4, 909–914.Google Scholar
Oed, A. (1988). Position-sensitive detector with microstrip anode for electron multiplication with gases. Nucl. Instrum. Methods A, 263, 351–359.Google Scholar
Oed, A. (1995). Properties of micro-strip gas chambers (MSGC) and recent developments. Nucl. Instrum. Methods A, 367, 34–40.Google Scholar
Pedersen, J. S., Posselt, D. & Mortensen, K. (1990). Analytical treatment of the resolution function for small-angle scattering. J. Appl. Cryst. 23, 321–333.Google Scholar
Popovici, M. & Yelon, W. B. (1995). Focusing monochromators for neutron diffraction. J. Neutron Res. 3, 1–26.Google Scholar
Prael, R. E. (1994). A review of the physics models in the LAHET code. Report LA-UR-94-1817. Los Alamos National Laboratory, USA.Google Scholar
Prask, H. J., Rowe, J. M., Rush, J. J. & Schroeder, I. G. (1993). The NIST cold neutron research facility. J. Res. NIST, 98, 1–14.Google Scholar
Pynn, R. (1984). Neutron scattering instrumentation at reactor based installations. Rev. Sci. Instrum. 55, 837–848.Google Scholar
Radeka, V. (1988). Low noise techniques in detectors. Annu. Rev. Nucl. Part. Sci. 38, 217–277.Google Scholar
Radeka, V. & Boie, R. A. (1980). Centroid finding method for position-sensitive detectors. Nucl. Instrum. Methods, 178, 543–554.Google Scholar
Radeka, V., Schaknowski, N. A., Smith, G. C. & Yu, B. (1996). High precision thermal neutron detectors. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 57–67. New York: Plenum Press.Google Scholar
Rausch, C., Bücherl, T., Gähler, R., Seggern, H. & Winnacker, A. (1992). Recent developments in neutron detection. SPIE, 1737, 255–263.Google Scholar
Richter, D. & Springer, T. (1998). A twenty years forward look at neutron scattering facilities in the OECD countries and Russia. OECD Publication. Strasbourg: European Science Foundation.Google Scholar
Riste, T. (1970). Singly bent graphite monochromators for neutrons. Nucl. Instrum. Methods. 86, 1–4.Google Scholar
Russell, G. J., Ferguson, P. D., Pitcher, E. J. & Court, J. D. (1996). Neutronics and the MLNSC spallation target system. In Applications of accelerators in research and industry – proceedings of the 14th international conference, edited by J. L. Duggan and I. L. Morgan. AIP Conference Proceedings, Vol. 392, pp. 361–364.Google Scholar
Sauli, F. (1977). Principles of operation of multiwire proportional and drift chambers. Report CERN-77-09. CERN, Geneva, Switzerland.Google Scholar
Saxena, A. M. & Schoenborn, B. P. (1977). Multilayer neutron monochromators. Acta Cryst. A33, 805–813.Google Scholar
Saxena, A. M. & Schoenborn, B. P. (1988). Multilayer monochromators for neutron spectrometers. Mater. Sci. Forum, 27/28, 313–318.Google Scholar
Schärpf, O. & Anderson, I. S. (1994). The role of surfaces and interfaces in the behaviour of non-polarizing and polarizing supermirrors. Physica B, 198, 203–212.Google Scholar
Schefer, J., Medarde, M., Fischer, S., Thut, R., Koch, M., Fischer, P., Staub, U., Horisberger, M., Bottger, G. & Donni, A. (1996). Sputtering method for improving neutron composite germanium monochromators. Nucl. Instrum. Methods A, 372, 229–232.Google Scholar
Schneider, D. K. & Schoenborn, B. P. (1984). A new neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor. In Neutrons in biology, edited by B. P. Schoenborn, pp. 119–141. New York: Plenum Press.Google Scholar
Schoenborn, B. P. (1992a). Multilayer monochromators and super mirrors for neutron protein crystallography using a quasi Laue technique. SPIE, 1738, 192–199.Google Scholar
Schoenborn, B. P. (1992b). Area detectors for neutron protein crystallography. SPIE, 1737, 235–243.Google Scholar
Schoenborn, B. P. (1996). A protein crystallography station at the Los Alamos Neutron Science Center. Report LA-UR-96-3508, 11–64. Los Alamos National Laboratory, USA.Google Scholar
Schoenborn, B. P., Court, D., Larson, A. C. & Ferguson, P. (1999). Moderator decoupling options for structural biology at spallation neutron sources. J. Neutron Res. 7, 89–106.Google Scholar
Schoenborn, B. P., Saxena, A. M., Stamm, M., Dimmler, G. & Radeka, V. (1985). A neutron spectrometer with a two-dimensional detector for time resolved studies. Aust. J. Phys. 38, 337–351.Google Scholar
Schoenborn, B. P., Schefer, J. & Schneider, D. (1986). The use of wire chambers in structural biology. Nucl. Instrum. Methods A, 252, 180–187.Google Scholar
Sears, V. F. (1983). Theory of multilayer neutron monochromators. Acta Cryst. A39, 601–608.Google Scholar
Sears, V. F. (1989). Neutron optics: an introduction to the theory of neutron optical phenomena and their applications. Oxford series on neutron scattering in condensed matter. New York: Oxford University Press.Google Scholar
Sivia, D. S., Silver, R. N. & Pynn, R. (1990). The Bayesian approach to optimal instrument design. In Neutron scattering data analysis, edited by M. W. Johnson, Institute of Physics Conference Series, Vol. 107, pp. 45–55.Google Scholar
Soodak, H. (1962). Editor. Reactor handbook. New York: Wiley.Google Scholar
Spanier, J. & Gelbard, E. M. (1969). Monte Carlo principles and neutron transport problems. London: Addison-Wesley.Google Scholar
Stamm'ler, R. J. J. & Abbate, M. J. (1983). Methods of steady-state reactor physics in nuclear design. London: Academic Press.Google Scholar
Stuhrmann, H. B. & Nierhaus, K. H. (1996). The determination of the in situ structure by nuclear spin contrast variation. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 397–413. New York: Plenum Press.Google Scholar
Takahashi, K., Tazaki, S., Miyahara, J., Karasawa, Y. & Niimura, N. (1996). Imaging performance of imaging plate neutron detectors. Nucl. Instrum. Methods A, 377, 119–122.Google Scholar
Vellettaz, N., Assaf, J. E. & Oed, A. (1997). Two dimensional gaseous microstrip detector for thermal neutrons. Nucl. Instrum. Methods A, 392, 73–79.Google Scholar
Vogt, T., Passell, L., Cheung, S. & Axe, J. D. (1994). Using wafer stacks as neutron monochromators. Nucl. Instrum. Methods A, 338, 71–77.Google Scholar
Wagner, V., Friedrich, H. & Wille, P. (1992). Performance of a high-tech neutron velocity selector. Physica B, 180–181, 938–940.Google Scholar
Weisman, J. (1983). Editor. Elements of nuclear reactor design. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Well, A. A. van, de Haan, V. O. & Mildner, D. F. R. (1991). The average number of reflections in a curved neutron guide. Nucl. Instrum. Methods A, 309, 284–286.Google Scholar
West, C. D. (1989). The US advanced neutron source. ICANS X, Los Alamos USA, pp. 643–654.Google Scholar
Wignall, G. D., Christen, D. K. & Ramakrishnan, V. (1988). Instrumental resolution effects in small-angle neutron scattering. J. Appl. Cryst. 21, 438–451.Google Scholar
Williams, M. M. R. (1966). The slowing down and thermalization of neutrons. Amsterdam: North Holland.Google Scholar
Windsor, C. G. (1981). Pulsed neutron scattering. London: Wiley.Google Scholar
Windsor, C. G. (1986). Experimental techniques. In Methods of experimental physics, Vol. 23A. New York, London: Academic Press.Google Scholar