Tables for
Volume F
Crystallography of biological macromolecules
Edited by E. Arnold, D. M. Himmel and M. G. Rossmann

International Tables for Crystallography (2012). Vol. F, ch. 16.1, p. 419   | 1 | 2 |

Section Random omit maps

G. M. Sheldrick,a C. J. Gilmore,b H. A. Hauptman,c C. M. Weeks,c* R. Millerc and I. Usónd

aLehrstuhl für Strukturchemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany,bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK,cHauptman–Woodward Medical Research Institute, Inc., 700 Ellicott Street, Buffalo, NY 14203–1102, USA, and dInstitució Catalana de Recerca i Estudis Avançats at IBMB-CSIC, Barcelona Science Park. Baldiri Reixach 15, 08028 Barcelona, Spain
Correspondence e-mail: Random omit maps

| top | pdf |

A third peak-picking strategy involves selecting approximately [1.3N_{u}] of the top peaks and eliminating some, but, in this case, the deleted peaks are chosen at random. Typically, one-third of the potential atoms are removed, and the remaining atoms are used to compute [E_{c}]. By analogy to the common practice in macromolecular crystallography of omitting part of a structure from a Fourier calculation in the hope of finding an improved position for the deleted fragment, this version of peak picking is described as random omit. This procedure helps to prevent the dual-space recycling from getting stuck in a local minimum and is thus an efficient search algorithm.

to end of page
to top of page